PREPARATION OF NOVEL HYBRID (ALMOND SHELL AND PLEUROTUS SAJOR CAJU) BIOSORBENT FOR THE REMOVAL OF HEAVY METALS (NICKEL AND LEAD) FROM WASTEWATER

Aneeza Abdul Sattar
{"title":"PREPARATION OF NOVEL HYBRID (ALMOND SHELL AND PLEUROTUS SAJOR CAJU) BIOSORBENT FOR THE REMOVAL OF HEAVY METALS (NICKEL AND LEAD) FROM WASTEWATER","authors":"Aneeza Abdul Sattar","doi":"10.26480/wcm.01.2021.01.07","DOIUrl":null,"url":null,"abstract":"Level of contaminants (Nickel and Lead) in aquatic ecosystems has increased due to discharge of industrial effluents in water. Hence, there is a need to remove heavy metals (Nickel and Lead) from the water. For removing heavy metals from water, hybrid biosorbent (Almond shell and Pleurotus sajor caju) was prepared. To prepare a novel hybrid biosorbent (Almond shell and Pleurotus sajor caju) for the removal of nickel and lead from waste water the study was conducted in the department of chemistry, university of agriculture Faisalabad. The biomass was collected from local market of Chiniot. Hybrid matrix (Almond shell and Pleurotus sajor caju) and heavy metals (Nickel and Lead) were prepared. Waste water was interacted with the developed hybrid metals (Nickel and Lead) and hybrid bio sorbent (almond shell and P.sajor caju).The maximum adsorption capacity q(mg/g) of nickel and lead obtained at l0mgL-l concentration is in the following order; hybrid biosorbent(87)>P.sajor caju(65)> almond shell(54) and hybrid biosorbent(85)>P.sajor caju(57)>almond shell(45). The maximum uptake for nickel obtained by almond shell, P.sajor caju, hybrid biosorbent (56%), (66%), (90%) for lead and (47%), (61%), (89%) for nickel. The adsorption of nickel and lead follows the 2nd order kinetic model. FTIR spectra show that there are various functional groups, active sites present in hybrid biosorbent (Almond shell and Pleurotus sajor caju). Maximum absorption of lead occurs at pH 5 and nickel at pH 3. The sorptions of heavy metals (Lead and Nickel) follow the pseudo 2nd order kinetic model. From the whole analysis it is concluded that Hybrid biosorbent calm of microbial and plant waste biomass was extremely functional in exclusion of lead and Nickel from wastewater.","PeriodicalId":36321,"journal":{"name":"Water Conservation and Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Conservation and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26480/wcm.01.2021.01.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

Abstract

Level of contaminants (Nickel and Lead) in aquatic ecosystems has increased due to discharge of industrial effluents in water. Hence, there is a need to remove heavy metals (Nickel and Lead) from the water. For removing heavy metals from water, hybrid biosorbent (Almond shell and Pleurotus sajor caju) was prepared. To prepare a novel hybrid biosorbent (Almond shell and Pleurotus sajor caju) for the removal of nickel and lead from waste water the study was conducted in the department of chemistry, university of agriculture Faisalabad. The biomass was collected from local market of Chiniot. Hybrid matrix (Almond shell and Pleurotus sajor caju) and heavy metals (Nickel and Lead) were prepared. Waste water was interacted with the developed hybrid metals (Nickel and Lead) and hybrid bio sorbent (almond shell and P.sajor caju).The maximum adsorption capacity q(mg/g) of nickel and lead obtained at l0mgL-l concentration is in the following order; hybrid biosorbent(87)>P.sajor caju(65)> almond shell(54) and hybrid biosorbent(85)>P.sajor caju(57)>almond shell(45). The maximum uptake for nickel obtained by almond shell, P.sajor caju, hybrid biosorbent (56%), (66%), (90%) for lead and (47%), (61%), (89%) for nickel. The adsorption of nickel and lead follows the 2nd order kinetic model. FTIR spectra show that there are various functional groups, active sites present in hybrid biosorbent (Almond shell and Pleurotus sajor caju). Maximum absorption of lead occurs at pH 5 and nickel at pH 3. The sorptions of heavy metals (Lead and Nickel) follow the pseudo 2nd order kinetic model. From the whole analysis it is concluded that Hybrid biosorbent calm of microbial and plant waste biomass was extremely functional in exclusion of lead and Nickel from wastewater.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型杏仁壳与杏侧耳杂合生物吸附剂的制备及其去除废水中重金属(镍和铅)的研究
由于向水中排放工业废水,水生生态系统中的污染物(镍和铅)水平有所增加。因此,有必要去除水中的重金属(镍和铅)。为去除水中重金属,制备了杏仁壳和杏鲍菇混合生物吸附剂。为制备一种新型杏仁壳和杏鲍菇混合生物吸附剂去除废水中的镍和铅,在费萨拉巴德农业大学化学系进行了研究。生物质是从中国当地市场收集的。制备了杏仁壳和杏鲍菇杂化基质和重金属(镍和铅)。研究了开发的杂化金属(镍和铅)和杂化生物吸附剂(杏仁壳和白杨)与废水的相互作用。浓度为10mg -l时对镍和铅的最大吸附量q(mg/g)依次为:混合biosorbent (87) > P。大枣(65)>杏仁壳(54)和杂交生物吸附剂(85)>p。大酒(57)>杏仁壳(45)。杏仁壳对镍的最大吸收量为铅(56%)、(66%)、(90%)和镍(47%)、(61%)、(89%)。对镍和铅的吸附符合二级动力学模型。红外光谱分析表明,杏仁壳和杏鲍菇混合生物吸附剂中存在多种官能团和活性位点。铅在pH 5时吸收最多,镍在pH 3时吸收最多。重金属(铅和镍)的吸附符合准二级动力学模型。综上所述,微生物和植物废弃物混合生物吸附剂对废水中的铅和镍具有很强的去除作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Conservation and Management
Water Conservation and Management Engineering-Ocean Engineering
CiteScore
2.90
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Water Governance and Social Equity in South African Rural Municipalities: a Case Study of a District Municipality in the Eastern Cape Province PREPARATION OF NOVEL HYBRID (ALMOND SHELL AND PLEUROTUS SAJOR CAJU) BIOSORBENT FOR THE REMOVAL OF HEAVY METALS (NICKEL AND LEAD) FROM WASTEWATER INTEGRATED APPROACH OF PHYCOREMEDIATION IN WASTEWATER TREATMENT: AN INSIGHT ROLE OF PHYCOREMEDIATION IN DOMESTIC WASTEWATER TREATMENT ADSORPTIVE CAPACITY OF COFFEE HUSK IN THE REMOVAL OF CHROMIUM (VI) AND ZINK (II) FROM TANNERY EFFLUENT: KINETICS AND EQUILIBRIUM STUDIES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1