A Low-power DRAM Controller ASIC with a 36% Reduction in Average Active Power by Increasing On-die Termination Resistance

IF 0.5 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Semiconductor Technology and Science Pub Date : 2023-04-30 DOI:10.5573/jsts.2023.23.2.98
Won-Cheol Lee, Ho-Jun Kim, Hong-June Park
{"title":"A Low-power DRAM Controller ASIC with a 36% Reduction in Average Active Power by Increasing On-die Termination Resistance","authors":"Won-Cheol Lee, Ho-Jun Kim, Hong-June Park","doi":"10.5573/jsts.2023.23.2.98","DOIUrl":null,"url":null,"abstract":"—A low-power DRAM controller ASIC is proposed for point-to-point interconnects such as deep learning applications. The termination resistance of the DRAM controller is increased to 160 Ω and infinity during the write and read modes, respectively, to reduce power consumption with no transmission errors. Short-reach interconnects of 25 mm DQ/DQS lines are used to avoid signal integrity issues. The proposed DRAM controller is implemented in a 65 nm process with an active area of 1.64 mm 2 , 16 DQ 8 Gb configuration, and a data rate of 800 Mbps per DQ pin. The DRAM interface using the proposed controller and a commercial DDR3 DRAM chip consumes 379 mW on average; this is 64% of the power with the default termination of the JEDEC standard. Derived equations for the TX and RX current of the DRAM interface reveals that the TX current of a clock signal is minimized when the time of flight of the PCB channel is integer multiples of the half period of the clock signal with large TX and RX terminations.","PeriodicalId":17067,"journal":{"name":"Journal of Semiconductor Technology and Science","volume":"159 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Semiconductor Technology and Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5573/jsts.2023.23.2.98","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

—A low-power DRAM controller ASIC is proposed for point-to-point interconnects such as deep learning applications. The termination resistance of the DRAM controller is increased to 160 Ω and infinity during the write and read modes, respectively, to reduce power consumption with no transmission errors. Short-reach interconnects of 25 mm DQ/DQS lines are used to avoid signal integrity issues. The proposed DRAM controller is implemented in a 65 nm process with an active area of 1.64 mm 2 , 16 DQ 8 Gb configuration, and a data rate of 800 Mbps per DQ pin. The DRAM interface using the proposed controller and a commercial DDR3 DRAM chip consumes 379 mW on average; this is 64% of the power with the default termination of the JEDEC standard. Derived equations for the TX and RX current of the DRAM interface reveals that the TX current of a clock signal is minimized when the time of flight of the PCB channel is integer multiples of the half period of the clock signal with large TX and RX terminations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种低功耗DRAM控制器ASIC,通过增加片上终止电阻使平均有功功率降低36%
一种低功耗DRAM控制器ASIC,用于点对点互连,如深度学习应用。在写入模式和读取模式时,DRAM控制器的终止电阻分别增加到160 Ω和无穷大,从而在没有传输错误的情况下降低功耗。使用25mm DQ/DQS线的短距离互连来避免信号完整性问题。所提出的DRAM控制器采用65纳米工艺,有效面积为1.64 mm 2, 16 DQ 8gb配置,每个DQ引脚的数据速率为800 Mbps。采用该控制器和商用DDR3 DRAM芯片的DRAM接口平均功耗为379 mW;这是JEDEC标准默认终止时功率的64%。导出的DRAM接口的TX和RX电流方程表明,当PCB通道的飞行时间是具有大TX和RX终端的时钟信号半周期的整数倍时,时钟信号的TX电流最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Semiconductor Technology and Science
Journal of Semiconductor Technology and Science ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
0.90
自引率
0.00%
发文量
40
审稿时长
6-12 weeks
期刊介绍: Journal of Semiconductor Technology and Science is published to provide a forum for R&D people involved in every aspect of the integrated circuit technology, i.e., VLSI fabrication process technology, VLSI device technology, VLSI circuit design and other novel applications of this mass production technology. When IC was invented, these people worked together in one place. However, as the field of IC expanded, our individual knowledge became narrower, creating different branches in the technical society, which has made it more difficult to communicate as a whole. The fisherman, however, always knows that he can capture more fish at the border where warm and cold-water meet. Thus, we decided to go backwards gathering people involved in all VLSI technology in one place.
期刊最新文献
A 97.7-dB DR 12.3-μW 1-kHz Bandwidth 2<SUP>nd</SUP> Order Delta-sigma Modulator with a Fully Differential Class-AB Op-Amp using Floating Class-AB Control In-depth Survey of Processing-in-memory Architectures for Deep Neural Networks Deep Learning Segmentation Modeling for SiN, SiO<SUB>2</SUB> Film Deposition Process Defect of High Bandwidth Memory Empirical Analysis of Disaggregated Cloud Memory on Memory Intensive Applications A 20-Gb/s PAM-4 Receiver with Dual-mode Threshold Voltage Adaptation using a Time-based LSB Decoder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1