Book recommendation system based on an optimized collaborative filtering algorithm

Yujie Lu, Yidi Lu
{"title":"Book recommendation system based on an optimized collaborative filtering algorithm","authors":"Yujie Lu, Yidi Lu","doi":"10.1109/cvidliccea56201.2022.9824088","DOIUrl":null,"url":null,"abstract":"Collaborative filtering is widely applied in recommendation systems. The traditional method usually adopts the cosine similarity algorithm or Pearson algorithm, but a sparse rating matrix may lead to inaccurate recommendation results. The optimized algorithm adds penalty terms according to the number of score vector elements to reduce the impact of sparsity. More purchase behaviors are taken into account in the optimization algorithm, including user activity, product popularity, and the time cost of user preferences. Due to the validity of the data set, the top-k method is adopted to select k users with the highest similarity (1) as the recommendation basis. Compared with the traditional method, the numerical results have a lower root mean squared error, and the algorithm execution time is significantly shortened. The optimized collaborative filtering algorithm can effectively alleviate the impact of sparsity and consider more purchasing behaviors, thus improving the algorithm efficiency and rating reliability of the book recommendation system.","PeriodicalId":23649,"journal":{"name":"Vision","volume":"74 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvidliccea56201.2022.9824088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Collaborative filtering is widely applied in recommendation systems. The traditional method usually adopts the cosine similarity algorithm or Pearson algorithm, but a sparse rating matrix may lead to inaccurate recommendation results. The optimized algorithm adds penalty terms according to the number of score vector elements to reduce the impact of sparsity. More purchase behaviors are taken into account in the optimization algorithm, including user activity, product popularity, and the time cost of user preferences. Due to the validity of the data set, the top-k method is adopted to select k users with the highest similarity (1) as the recommendation basis. Compared with the traditional method, the numerical results have a lower root mean squared error, and the algorithm execution time is significantly shortened. The optimized collaborative filtering algorithm can effectively alleviate the impact of sparsity and consider more purchasing behaviors, thus improving the algorithm efficiency and rating reliability of the book recommendation system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于优化协同过滤算法的图书推荐系统
协同过滤在推荐系统中有着广泛的应用。传统的推荐方法通常采用余弦相似度算法或Pearson算法,但稀疏的评分矩阵可能导致推荐结果不准确。优化后的算法根据分数向量元素的个数增加惩罚项,以减少稀疏性的影响。优化算法考虑了更多的购买行为,包括用户活跃度、产品受欢迎程度和用户偏好的时间成本。考虑到数据集的有效性,采用top-k方法,选取相似度最高的k个用户(1)作为推荐依据。与传统方法相比,数值计算结果的均方根误差更小,算法执行时间明显缩短。优化后的协同过滤算法可以有效缓解稀疏性的影响,考虑更多的购买行为,从而提高了图书推荐系统的算法效率和评分可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Eye Axial Length Measurements Taken Using Partial Coherence Interferometry and OCT Biometry The Effect of the Zonular Fiber Angle of Insertion on Accommodation Perceptual Biases in the Interpretation of Non-Rigid Shape Transformations from Motion A New Model of a Macular Buckle and a Refined Surgical Technique for the Treatment of Myopic Traction Maculopathy Eyes on Memory: Pupillometry in Encoding and Retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1