This study evaluates the inter-device measurement properties of partial coherence interferometry (PCI) and spectral domain optical coherence tomography (SD-OCT) in measuring axial length, particularly for myopia management. We recruited 82 eyes from 41 adult participants with a mean age of 31.0 ± 17.6 years and a mean spherical equivalent of −2.20 ± 2.28 D. Axial length was measured using SD-OCT and PCI for both the right and left eyes. Agreement between the two measurements was assessed using Bland–Altman analysis, and graphs and values were compared with linear mixed models. The results show a near-to-zero and non-significant bias between measurements. The 95% limits of agreement showed a value of 0.06 mm. Both devices can accurately measure the axial length. OCT biometry performed with SD-OCT can be successfully interchanged with partial coherence interferometry, but they should be cautiously interchanged when performing longitudinal comparisons.
{"title":"Comparison of Eye Axial Length Measurements Taken Using Partial Coherence Interferometry and OCT Biometry","authors":"Nicola Rizzieri, Alessio Facchin","doi":"10.3390/vision8030046","DOIUrl":"https://doi.org/10.3390/vision8030046","url":null,"abstract":"This study evaluates the inter-device measurement properties of partial coherence interferometry (PCI) and spectral domain optical coherence tomography (SD-OCT) in measuring axial length, particularly for myopia management. We recruited 82 eyes from 41 adult participants with a mean age of 31.0 ± 17.6 years and a mean spherical equivalent of −2.20 ± 2.28 D. Axial length was measured using SD-OCT and PCI for both the right and left eyes. Agreement between the two measurements was assessed using Bland–Altman analysis, and graphs and values were compared with linear mixed models. The results show a near-to-zero and non-significant bias between measurements. The 95% limits of agreement showed a value of 0.06 mm. Both devices can accurately measure the axial length. OCT biometry performed with SD-OCT can be successfully interchanged with partial coherence interferometry, but they should be cautiously interchanged when performing longitudinal comparisons.","PeriodicalId":23649,"journal":{"name":"Vision","volume":"10 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141801754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liying Feng, Barbara K. Pierscionek, Henk Weeber, Carmen Canovas Vidal, Jos J. Rozema
Purpose: With age, there is an anterior shift of the ciliary body in the eye, which alters the angle of zonular insertion in older eyes compared with younger eyes. This study aims to simulate lens accommodation with different zonular angles to consider the influence of zonular position on lens accommodative capacity. Methods: Models were constructed based on lenses aged 11, 29, and 45 years using a 2D axisymmetric structure that included a capsule, cortex, nucleus, and zonular fibers. The different zonular fibers were simulated by changing the position of the point where the zonular fibers connect to the ciliary body. The effect of the different zonular fiber insertion angles on the model shape and optical power was analyzed. Results: The models show that smaller angles made by zonular fibers to the surface of the lens lead to larger optical power changes with simulated stretching. When the models were stretched, and when varying the zonule angles, the optical power of the 11-, 29-, and 45-year-old models changed up to 0.17 D, 0.24 D, and 0.30 D, respectively. The effect of zonular angles on the anterior radius of curvature of the anterior surface varied by 0.29 mm, 0.23 mm, and 0.25 mm for the 11-, 29-, and 45-year-old models, respectively. Conclusions: Larger zonular fiber insertion angles cause smaller deformation and less accommodative change, while parallel zonules induce the largest change in lens shape.
{"title":"The Effect of the Zonular Fiber Angle of Insertion on Accommodation","authors":"Liying Feng, Barbara K. Pierscionek, Henk Weeber, Carmen Canovas Vidal, Jos J. Rozema","doi":"10.3390/vision8030045","DOIUrl":"https://doi.org/10.3390/vision8030045","url":null,"abstract":"Purpose: With age, there is an anterior shift of the ciliary body in the eye, which alters the angle of zonular insertion in older eyes compared with younger eyes. This study aims to simulate lens accommodation with different zonular angles to consider the influence of zonular position on lens accommodative capacity. Methods: Models were constructed based on lenses aged 11, 29, and 45 years using a 2D axisymmetric structure that included a capsule, cortex, nucleus, and zonular fibers. The different zonular fibers were simulated by changing the position of the point where the zonular fibers connect to the ciliary body. The effect of the different zonular fiber insertion angles on the model shape and optical power was analyzed. Results: The models show that smaller angles made by zonular fibers to the surface of the lens lead to larger optical power changes with simulated stretching. When the models were stretched, and when varying the zonule angles, the optical power of the 11-, 29-, and 45-year-old models changed up to 0.17 D, 0.24 D, and 0.30 D, respectively. The effect of zonular angles on the anterior radius of curvature of the anterior surface varied by 0.29 mm, 0.23 mm, and 0.25 mm for the 11-, 29-, and 45-year-old models, respectively. Conclusions: Larger zonular fiber insertion angles cause smaller deformation and less accommodative change, while parallel zonules induce the largest change in lens shape.","PeriodicalId":23649,"journal":{"name":"Vision","volume":"112 19","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141812050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Most existing research on the perception of 3D shape from motion has focused on rigidly moving objects. However, many natural objects deform non-rigidly, leading to image motion with no rigid interpretation. We investigated potential biases underlying the perception of non-rigid shape interpretations from motion. We presented observers with stimuli that were consistent with two qualitatively different interpretations. Observers were shown a two-part 3D object with the smaller part changing in length dynamically as the whole object rotated back and forth. In two experiments, we studied the misperception (i.e., perceptual reinterpretation) of the non-rigid length change to a part. In Experiment 1, observers misperceived this length change as a part orientation change (i.e., the smaller part was seen as articulating with respect to the larger part). In Experiment 2, the stimuli were similar, except the silhouette of the part was visible in the image. Here, the non-rigid length change was reinterpreted as a rigidly attached part with an “illusory” non-orthogonal horizontal angle relative to the larger part. We developed a model that incorporated this perceptual reinterpretation and could predict observer data. We propose that the visual system may be biased towards part-wise rigid interpretations of non-rigid motion, likely due to the ecological significance of movements of humans and other animals, which are generally constrained to move approximately part-wise rigidly. That is, not all non-rigid deformations are created equal: the visual systems’ prior expectations may bias the system to interpret motion in terms of biologically plausible shape transformations.
{"title":"Perceptual Biases in the Interpretation of Non-Rigid Shape Transformations from Motion","authors":"Ryne Choi, Jacob Feldman, Manish Singh","doi":"10.3390/vision8030043","DOIUrl":"https://doi.org/10.3390/vision8030043","url":null,"abstract":"Most existing research on the perception of 3D shape from motion has focused on rigidly moving objects. However, many natural objects deform non-rigidly, leading to image motion with no rigid interpretation. We investigated potential biases underlying the perception of non-rigid shape interpretations from motion. We presented observers with stimuli that were consistent with two qualitatively different interpretations. Observers were shown a two-part 3D object with the smaller part changing in length dynamically as the whole object rotated back and forth. In two experiments, we studied the misperception (i.e., perceptual reinterpretation) of the non-rigid length change to a part. In Experiment 1, observers misperceived this length change as a part orientation change (i.e., the smaller part was seen as articulating with respect to the larger part). In Experiment 2, the stimuli were similar, except the silhouette of the part was visible in the image. Here, the non-rigid length change was reinterpreted as a rigidly attached part with an “illusory” non-orthogonal horizontal angle relative to the larger part. We developed a model that incorporated this perceptual reinterpretation and could predict observer data. We propose that the visual system may be biased towards part-wise rigid interpretations of non-rigid motion, likely due to the ecological significance of movements of humans and other animals, which are generally constrained to move approximately part-wise rigidly. That is, not all non-rigid deformations are created equal: the visual systems’ prior expectations may bias the system to interpret motion in terms of biologically plausible shape transformations.","PeriodicalId":23649,"journal":{"name":"Vision","volume":" 40","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141679049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Myopic traction maculopathy (MTM) affects 20% of eyes with pathologic myopia (PM). The MTM Staging System (MSS), published in 2020, describes the nomenclature of MTM as well as a proposal of pathogenesis, natural evolution, and prognosis. A study of customized treatment for each stage of MTM has been published previously and suggested to treat maculoschisis and detachment by placing a macular buckle (MB) behind the macula to push the sclera towards the retina, selecting pars plana vitrectomy (PPV) only in cases where a macular hole is associated with MTM. We hereby describe a new model of a macular buckle, known as NPB, and an NPB loading device, with the aim to standardize the surgical technique and render it more user friendly, efficient, and safe. Macular buckle is an effective and safe procedure to treat maculoschisis and macular detachment in MTM. We recommend using it as a unique and first-line treatment.
{"title":"A New Model of a Macular Buckle and a Refined Surgical Technique for the Treatment of Myopic Traction Maculopathy","authors":"B. Parolini","doi":"10.3390/vision8030042","DOIUrl":"https://doi.org/10.3390/vision8030042","url":null,"abstract":"Myopic traction maculopathy (MTM) affects 20% of eyes with pathologic myopia (PM). The MTM Staging System (MSS), published in 2020, describes the nomenclature of MTM as well as a proposal of pathogenesis, natural evolution, and prognosis. A study of customized treatment for each stage of MTM has been published previously and suggested to treat maculoschisis and detachment by placing a macular buckle (MB) behind the macula to push the sclera towards the retina, selecting pars plana vitrectomy (PPV) only in cases where a macular hole is associated with MTM. We hereby describe a new model of a macular buckle, known as NPB, and an NPB loading device, with the aim to standardize the surgical technique and render it more user friendly, efficient, and safe. Macular buckle is an effective and safe procedure to treat maculoschisis and macular detachment in MTM. We recommend using it as a unique and first-line treatment.","PeriodicalId":23649,"journal":{"name":"Vision","volume":"119 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141682982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This review critically examines the contributions of pupillometry to memory research, primarily focusing on its enhancement of our understanding of memory encoding and retrieval mechanisms mainly investigated with the recognition memory paradigm. The evidence supports a close link between pupil response and memory formation, notably influenced by the type of novelty detected. This proposal reconciles inconsistencies in the literature regarding pupil response patterns that may predict successful memory formation, and highlights important implications for encoding mechanisms. The review also discusses the pupil old/new effect and its significance in the context of recollection and in reflecting brain signals related to familiarity or novelty detection. Additionally, the capacity of pupil response to serve as a true memory signal and to distinguish between true and false memories is evaluated. The evidence provides insights into the nature of false memories and offers a novel understanding of the cognitive mechanisms involved in memory distortions. When integrated with rigorous experimental design, pupillometry can significantly refine theoretical models of memory encoding and retrieval. Furthermore, combining pupillometry with neuroimaging and pharmacological interventions is identified as a promising direction for future research.
{"title":"Eyes on Memory: Pupillometry in Encoding and Retrieval","authors":"Alex Kafkas","doi":"10.3390/vision8020037","DOIUrl":"https://doi.org/10.3390/vision8020037","url":null,"abstract":"This review critically examines the contributions of pupillometry to memory research, primarily focusing on its enhancement of our understanding of memory encoding and retrieval mechanisms mainly investigated with the recognition memory paradigm. The evidence supports a close link between pupil response and memory formation, notably influenced by the type of novelty detected. This proposal reconciles inconsistencies in the literature regarding pupil response patterns that may predict successful memory formation, and highlights important implications for encoding mechanisms. The review also discusses the pupil old/new effect and its significance in the context of recollection and in reflecting brain signals related to familiarity or novelty detection. Additionally, the capacity of pupil response to serve as a true memory signal and to distinguish between true and false memories is evaluated. The evidence provides insights into the nature of false memories and offers a novel understanding of the cognitive mechanisms involved in memory distortions. When integrated with rigorous experimental design, pupillometry can significantly refine theoretical models of memory encoding and retrieval. Furthermore, combining pupillometry with neuroimaging and pharmacological interventions is identified as a promising direction for future research.","PeriodicalId":23649,"journal":{"name":"Vision","volume":"18 18","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141340943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Serena Mastria, Maurizio Codispoti, Virginia Tronelli, Andrea De Cesarei
It is debated whether emotional processing and response depend on semantic identification or are preferentially tied to specific information in natural scenes, such as global features or local details. The present study aimed to further examine the relationship between scene understanding and affective response while manipulating visual content. To this end, we presented affective and neutral natural scenes which were progressively band-filtered to contain global features (low spatial frequencies) or local details (high spatial frequencies) and assessed both affective response and scene understanding. We observed that, if scene content was correctly reported, subjective ratings of arousal and valence were modulated by the affective content of the scene, and this modulation was similar across spatial frequency bands. On the other hand, no affective modulation of subjective ratings was observed if picture content was not correctly reported. The present results indicate that subjective affective response requires content understanding, and it is not tied to a specific spatial frequency range.
{"title":"Subjective Affective Responses to Natural Scenes Require Understanding, Not Spatial Frequency Bands","authors":"Serena Mastria, Maurizio Codispoti, Virginia Tronelli, Andrea De Cesarei","doi":"10.3390/vision8020036","DOIUrl":"https://doi.org/10.3390/vision8020036","url":null,"abstract":"It is debated whether emotional processing and response depend on semantic identification or are preferentially tied to specific information in natural scenes, such as global features or local details. The present study aimed to further examine the relationship between scene understanding and affective response while manipulating visual content. To this end, we presented affective and neutral natural scenes which were progressively band-filtered to contain global features (low spatial frequencies) or local details (high spatial frequencies) and assessed both affective response and scene understanding. We observed that, if scene content was correctly reported, subjective ratings of arousal and valence were modulated by the affective content of the scene, and this modulation was similar across spatial frequency bands. On the other hand, no affective modulation of subjective ratings was observed if picture content was not correctly reported. The present results indicate that subjective affective response requires content understanding, and it is not tied to a specific spatial frequency range.","PeriodicalId":23649,"journal":{"name":"Vision","volume":"4 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141266808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Ong, Nicole V. Carrabba, E. Waisberg, Nasif Zaman, Hamza Memon, Nicholas Panzo, Virginia A. Lee, Prithul Sarker, Ashtyn Z Vogt, Noor Laylani, Alireza Tavakkoli, Andrew G. Lee
The ability to make on-field, split-second decisions is critical for National Football League (NFL) game officials. Multiple principles in visual function are critical for accuracy and precision of these play calls, including foveation time and unobstructed line of sight, static visual acuity, dynamic visual acuity, vestibulo-ocular reflex, and sufficient visual field. Prior research has shown that a standardized curriculum in these neuro-ophthalmic principles have demonstrated validity and self-rated improvements in understanding, confidence, and likelihood of future utilization by NFL game officials to maximize visual performance during officiating. Virtual reality technology may also be able to help optimize understandings of specific neuro-ophthalmic principles and simulate real-life gameplay. Personal communication between authors and NFL officials and leadership have indicated that there is high interest in 3D virtual on-field training for NFL officiating. In this manuscript, we review the current and past research in this space regarding a neuro-ophthalmic curriculum for NFL officials. We then provide an overview our current visualization engineering process in taking real-life NFL gameplay 2D data and creating 3D environments for virtual reality gameplay training for football officials to practice plays that highlight neuro-ophthalmic principles. We then review in-depth the physiology behind these principles and discuss strategies to implement these principles into virtual reality for football officiating.
对于全美橄榄球联盟(NFL)的比赛官员来说,在场上做出瞬间决定的能力至关重要。视觉功能的多项原则对这些比赛判罚的准确性和精确性至关重要,包括眼窝时间和无障碍视线、静态视敏度、动态视敏度、前庭眼反射和足够的视野。先前的研究表明,这些神经眼科原理的标准化课程已经证明了其有效性,并且 NFL 比赛官员在理解、信心和未来使用的可能性方面都有了自我评价的提高,从而在裁判工作中最大限度地提高视觉表现。虚拟现实技术也可能有助于优化对特定神经眼科原理的理解,并模拟现实生活中的比赛。作者与 NFL 官员和领导之间的个人交流表明,NFL 裁判员对 3D 虚拟赛场训练兴趣浓厚。在本手稿中,我们回顾了当前和过去在该领域针对 NFL 裁判的神经眼科课程研究。然后,我们概述了我们当前的可视化工程流程,即采用真实的 NFL 比赛 2D 数据并创建 3D 环境,用于虚拟现实比赛训练,让橄榄球官员练习突出神经眼科原理的比赛。然后,我们深入回顾了这些原理背后的生理学,并讨论了将这些原理应用到虚拟现实足球裁判中的策略。
{"title":"Dynamic Visual Acuity, Vestibulo-Ocular Reflex, and Visual Field in National Football League (NFL) Officiating: Physiology and Visualization Engineering for 3D Virtual On-Field Training","authors":"J. Ong, Nicole V. Carrabba, E. Waisberg, Nasif Zaman, Hamza Memon, Nicholas Panzo, Virginia A. Lee, Prithul Sarker, Ashtyn Z Vogt, Noor Laylani, Alireza Tavakkoli, Andrew G. Lee","doi":"10.3390/vision8020035","DOIUrl":"https://doi.org/10.3390/vision8020035","url":null,"abstract":"The ability to make on-field, split-second decisions is critical for National Football League (NFL) game officials. Multiple principles in visual function are critical for accuracy and precision of these play calls, including foveation time and unobstructed line of sight, static visual acuity, dynamic visual acuity, vestibulo-ocular reflex, and sufficient visual field. Prior research has shown that a standardized curriculum in these neuro-ophthalmic principles have demonstrated validity and self-rated improvements in understanding, confidence, and likelihood of future utilization by NFL game officials to maximize visual performance during officiating. Virtual reality technology may also be able to help optimize understandings of specific neuro-ophthalmic principles and simulate real-life gameplay. Personal communication between authors and NFL officials and leadership have indicated that there is high interest in 3D virtual on-field training for NFL officiating. In this manuscript, we review the current and past research in this space regarding a neuro-ophthalmic curriculum for NFL officials. We then provide an overview our current visualization engineering process in taking real-life NFL gameplay 2D data and creating 3D environments for virtual reality gameplay training for football officials to practice plays that highlight neuro-ophthalmic principles. We then review in-depth the physiology behind these principles and discuss strategies to implement these principles into virtual reality for football officiating.","PeriodicalId":23649,"journal":{"name":"Vision","volume":"32 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140965378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jordan R. Crabtree, Shadia Tannir, Khoa Tran, C. Boente, Asim Ali, Gregory H. Borschel
The measurement of corneal sensation allows clinicians to assess the status of corneal innervation and serves as a crucial indicator of corneal disease and eye health. Many devices are available to assess corneal sensation, including the Cochet–Bonnet aesthesiometer, the Belmonte Aesthesiometer, the Swiss Liquid Jet Aesthesiometer, and the newly introduced Corneal Esthesiometer Brill. Increasing the clinical use of in vivo confocal microscopy and optical coherence tomography will allow for greater insight into the diagnosis, classification, and monitoring of ocular surface diseases such as neurotrophic keratopathy; however, formal esthesiometric measurement remains necessary to assess the functional status of corneal nerves. These aesthesiometers vary widely in their mode of corneal stimulus generation and their relative accessibility, precision, and ease of clinical use. The development of future devices to optimize these characteristics, as well as further comparative studies between device types should enable more accurate and precise diagnosis and treatment of corneal innervation deficits. The purpose of this narrative review is to describe the advancements in the use of aesthesiometers since their introduction to clinical practice, compare currently available devices for assessing corneal innervation and their relative limitations, and discuss how the assessment of corneal innervation is crucial to understanding and treating pathologies of the ocular surface.
{"title":"Corneal Nerve Assessment by Aesthesiometry: History, Advancements, and Future Directions","authors":"Jordan R. Crabtree, Shadia Tannir, Khoa Tran, C. Boente, Asim Ali, Gregory H. Borschel","doi":"10.3390/vision8020034","DOIUrl":"https://doi.org/10.3390/vision8020034","url":null,"abstract":"The measurement of corneal sensation allows clinicians to assess the status of corneal innervation and serves as a crucial indicator of corneal disease and eye health. Many devices are available to assess corneal sensation, including the Cochet–Bonnet aesthesiometer, the Belmonte Aesthesiometer, the Swiss Liquid Jet Aesthesiometer, and the newly introduced Corneal Esthesiometer Brill. Increasing the clinical use of in vivo confocal microscopy and optical coherence tomography will allow for greater insight into the diagnosis, classification, and monitoring of ocular surface diseases such as neurotrophic keratopathy; however, formal esthesiometric measurement remains necessary to assess the functional status of corneal nerves. These aesthesiometers vary widely in their mode of corneal stimulus generation and their relative accessibility, precision, and ease of clinical use. The development of future devices to optimize these characteristics, as well as further comparative studies between device types should enable more accurate and precise diagnosis and treatment of corneal innervation deficits. The purpose of this narrative review is to describe the advancements in the use of aesthesiometers since their introduction to clinical practice, compare currently available devices for assessing corneal innervation and their relative limitations, and discuss how the assessment of corneal innervation is crucial to understanding and treating pathologies of the ocular surface.","PeriodicalId":23649,"journal":{"name":"Vision","volume":"102 27","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140987494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Traditional neuroimaging methods have identified alterations in brain activity patterns following mild traumatic brain injury (mTBI), particularly during rest, complex tasks, and normal vision. However, studies using graph theory to examine brain network changes in mTBI have produced varied results, influenced by the specific networks and task demands analyzed. In our study, we employed functional MRI to observe 17 mTBI patients and 54 healthy individuals as they viewed a simple, non-narrative underwater film, simulating everyday visual tasks. This approach revealed significant mTBI-related changes in network connectivity, efficiency, and organization. Specifically, the mTBI group exhibited higher overall connectivity and local network specialization, suggesting enhanced information integration without overwhelming the brain’s processing capabilities. Conversely, these patients showed reduced network segregation, indicating a less compartmentalized brain function compared to healthy controls. These patterns were consistent across various visual cortex subnetworks, except in primary visual areas. Our findings highlight the potential of using naturalistic stimuli in graph-based neuroimaging to understand brain network alterations in mTBI and possibly other conditions affecting brain integration.
{"title":"Graph Analysis of the Visual Cortical Network during Naturalistic Movie Viewing Reveals Increased Integration and Decreased Segregation Following Mild TBI","authors":"Tatiana Ruiz, Shael Brown, Reza Farivar","doi":"10.3390/vision8020033","DOIUrl":"https://doi.org/10.3390/vision8020033","url":null,"abstract":"Traditional neuroimaging methods have identified alterations in brain activity patterns following mild traumatic brain injury (mTBI), particularly during rest, complex tasks, and normal vision. However, studies using graph theory to examine brain network changes in mTBI have produced varied results, influenced by the specific networks and task demands analyzed. In our study, we employed functional MRI to observe 17 mTBI patients and 54 healthy individuals as they viewed a simple, non-narrative underwater film, simulating everyday visual tasks. This approach revealed significant mTBI-related changes in network connectivity, efficiency, and organization. Specifically, the mTBI group exhibited higher overall connectivity and local network specialization, suggesting enhanced information integration without overwhelming the brain’s processing capabilities. Conversely, these patients showed reduced network segregation, indicating a less compartmentalized brain function compared to healthy controls. These patterns were consistent across various visual cortex subnetworks, except in primary visual areas. Our findings highlight the potential of using naturalistic stimuli in graph-based neuroimaging to understand brain network alterations in mTBI and possibly other conditions affecting brain integration.","PeriodicalId":23649,"journal":{"name":"Vision","volume":" 36","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140993499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Research has suggested that near future events are typically viewed from a first-person (an own-eyes, also known as field) perspective while distant future events are typically viewed from a third-person (an observer) perspective. We investigated whether these distinct mental perspectives would be accompanied by distinct eye movement activities. We invited participants to imagine near and distant future events while their eye movements (i.e., scan path) were recorded by eye-tracking glasses. Analysis demonstrated fewer but longer fixations for near future thinking than for distant future thinking. Analysis also demonstrated more “field” mental visual perspective responses for near than for distant future thinking. The long fixations during near future thinking may mirror a mental visual exploration involving processing of a more complex visual representation compared with distant future thinking. By demonstrating how near future thinking triggers both “field” responses and long fixations, our study demonstrates how the temporality of future thinking triggers both distinct mental imagery and eye movement patterns.
{"title":"In the Eyes of the Future: Eye Movement during Near and Distant Future Thinking","authors":"M. El Haj, Ahmed A. Moustafa","doi":"10.3390/vision8020032","DOIUrl":"https://doi.org/10.3390/vision8020032","url":null,"abstract":"Research has suggested that near future events are typically viewed from a first-person (an own-eyes, also known as field) perspective while distant future events are typically viewed from a third-person (an observer) perspective. We investigated whether these distinct mental perspectives would be accompanied by distinct eye movement activities. We invited participants to imagine near and distant future events while their eye movements (i.e., scan path) were recorded by eye-tracking glasses. Analysis demonstrated fewer but longer fixations for near future thinking than for distant future thinking. Analysis also demonstrated more “field” mental visual perspective responses for near than for distant future thinking. The long fixations during near future thinking may mirror a mental visual exploration involving processing of a more complex visual representation compared with distant future thinking. By demonstrating how near future thinking triggers both “field” responses and long fixations, our study demonstrates how the temporality of future thinking triggers both distinct mental imagery and eye movement patterns.","PeriodicalId":23649,"journal":{"name":"Vision","volume":" 22","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140993246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}