H. Kubotera, Yasuyuki Kayama, S. Nagura, Y. Usami, Alexander Schmidt, U. Kwon, Keun-Ho Lee, Youngkwan Park
{"title":"Efficient Monte Carlo simulation of ion implantation into 3D FinFET structure","authors":"H. Kubotera, Yasuyuki Kayama, S. Nagura, Y. Usami, Alexander Schmidt, U. Kwon, Keun-Ho Lee, Youngkwan Park","doi":"10.1109/IIT.2014.6939999","DOIUrl":null,"url":null,"abstract":"Precise simulation of ion implantation is a crucial base point of Front End Process (FEP) TCAD. To meet both simulation accuracy target and achieve short turnaround time (TAT), an improved statistical enhancement method has been implemented in Monte Carlo ion implantation simulator. The approach used for statistical enhancement allowed lower lateral doping profile noise comparing to conventional method while using just a fraction of simulation time. The results led to significant TAT reduction for advanced Logic and Memory FEP simulations.","PeriodicalId":6548,"journal":{"name":"2014 20th International Conference on Ion Implantation Technology (IIT)","volume":"14 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 20th International Conference on Ion Implantation Technology (IIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIT.2014.6939999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Precise simulation of ion implantation is a crucial base point of Front End Process (FEP) TCAD. To meet both simulation accuracy target and achieve short turnaround time (TAT), an improved statistical enhancement method has been implemented in Monte Carlo ion implantation simulator. The approach used for statistical enhancement allowed lower lateral doping profile noise comparing to conventional method while using just a fraction of simulation time. The results led to significant TAT reduction for advanced Logic and Memory FEP simulations.