A 0.022mm2 970µW dual-loop injection-locked PLL with −243dB FOM using synthesizable all-digital PVT calibration circuits

W. Deng, A. Musa, T. Siriburanon, M. Miyahara, K. Okada, A. Matsuzawa
{"title":"A 0.022mm2 970µW dual-loop injection-locked PLL with −243dB FOM using synthesizable all-digital PVT calibration circuits","authors":"W. Deng, A. Musa, T. Siriburanon, M. Miyahara, K. Okada, A. Matsuzawa","doi":"10.1109/ISSCC.2013.6487720","DOIUrl":null,"url":null,"abstract":"For modern SoC systems, stringent requirements on on-chip clock generators include low area, low power consumption, environmental insensitivity, and the lowest possible jitter performance. Multiplying Delay-Locked Loop (MDLL) [1-2], subharmonically injection-locked techniques [3], and sub-sampling techniques [4-5] can significantly improve the random jitter characteristics of a clock generator. However, in order to guarantee their correct operation and optimal performance over process-voltage-temperature (PVT) variations, each method requires additional calibration circuits, which impose difficult-to-meet timing constraints. In the case of an injection-locked PLL (IL-PLL), a free-running frequency calibration is required. However, the output of an injection-locked oscillator is always fixed at the desired frequency, so a shift in the free-running frequency (e.g. caused by temperature and voltage variations) cannot be simply compensated for by using a frequency-locked loop (FLL). Therefore, we propose the use of a dual-loop topology with one free-running voltage-controlled oscillator (VCO) as a replica VCO placed inside a FLL for tracking temperature and voltage drift. The other VCO (the main VCO) is injection locked for producing a low-jitter clock, while the free-running frequency shift can be compensated for by the replica loop. The method provides robust output over temperature and voltage variations.","PeriodicalId":6378,"journal":{"name":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2013.6487720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

For modern SoC systems, stringent requirements on on-chip clock generators include low area, low power consumption, environmental insensitivity, and the lowest possible jitter performance. Multiplying Delay-Locked Loop (MDLL) [1-2], subharmonically injection-locked techniques [3], and sub-sampling techniques [4-5] can significantly improve the random jitter characteristics of a clock generator. However, in order to guarantee their correct operation and optimal performance over process-voltage-temperature (PVT) variations, each method requires additional calibration circuits, which impose difficult-to-meet timing constraints. In the case of an injection-locked PLL (IL-PLL), a free-running frequency calibration is required. However, the output of an injection-locked oscillator is always fixed at the desired frequency, so a shift in the free-running frequency (e.g. caused by temperature and voltage variations) cannot be simply compensated for by using a frequency-locked loop (FLL). Therefore, we propose the use of a dual-loop topology with one free-running voltage-controlled oscillator (VCO) as a replica VCO placed inside a FLL for tracking temperature and voltage drift. The other VCO (the main VCO) is injection locked for producing a low-jitter clock, while the free-running frequency shift can be compensated for by the replica loop. The method provides robust output over temperature and voltage variations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
0.022mm2 970µW双环注入锁相环,−243dB FOM,采用可合成全数字PVT校准电路
对于现代SoC系统,对片上时钟发生器的严格要求包括低面积,低功耗,环境不敏感和尽可能低的抖动性能。乘法延迟锁环(MDLL)[1-2]、次谐波注入锁定技术[3]和次采样技术[4-5]可以显著改善时钟发生器的随机抖动特性。然而,为了保证它们在过程电压-温度(PVT)变化下的正确运行和最佳性能,每种方法都需要额外的校准电路,这带来了难以满足的时序约束。在注入锁定锁相环(IL-PLL)的情况下,需要进行自由运行频率校准。然而,注入锁定振荡器的输出总是固定在期望的频率上,因此自由运行频率的移位(例如由温度和电压变化引起的)不能简单地通过使用锁频环(FLL)来补偿。因此,我们建议使用双环拓扑,其中一个自由运行的压控振荡器(VCO)作为放置在FLL内的复制VCO,用于跟踪温度和电压漂移。另一个VCO(主VCO)被注入锁定以产生低抖动时钟,而自由运行的频移可以由复制环路补偿。该方法在温度和电压变化时提供鲁棒输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A CMOS dual-switching power-supply modulator with 8% efficiency improvement for 20MHz LTE Envelope Tracking RF power amplifiers A 3.4pJ FeRAM-enabled D flip-flop in 0.13µm CMOS for nonvolatile processing in digital systems Razor-lite: A side-channel error-detection register for timing-margin recovery in 45nm SOI CMOS Self-super-cutoff power gating with state retention on a 0.3V 0.29fJ/cycle/gate 32b RISC core in 0.13µm CMOS A fully intraocular 0.0169mm2/pixel 512-channel self-calibrating epiretinal prosthesis in 65nm CMOS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1