{"title":"Comparative Performance and Emissions of CI Engine Fuelled with Diesel and Blends of Mosambi Peel Pyro Oil, Methanol and Nano Rh2O3 with Diesel","authors":"K. Venkatesan","doi":"10.4273/ijvss.14.7.19","DOIUrl":null,"url":null,"abstract":"This research article presents a comparative experimental study on the performance, exhaust emission and combustion characteristics of a CI engine fuelled with neat diesel and with three kinds of blends viz. MD10 (neat diesel with 10% mosambi peel pyro oil), MDM10 (neat diesel with 10% mosambi peel pyro oil and 10% methanol), MD10+Rh2O3 (neat diesel with 10% mosambi peel pyro oil and nano rhodium oxide fuel additive). The experiments were conducted on a direct injection single-cylinder water-cooled four-stroke diesel engine operated at a constant engine speed of 1500 rpm and under varied brake power conditions. The results showed that MD10+Rh2O3 outperformed the rest in terms of all the performance, emission and combustion characteristics. MD10+Rh2O3 was found to have achieved, 5% higher brake thermal efficiency, 18.5% reduced SFC and 8% reduced exhaust gas temperatures respectively. This fuel has also achieved 10.5%, 5.5%, 9.45%, 11% marginal drop in noxious pollutants such as CO (Carbon Monoxide), unburnt HC (Hydrocarbons), NOx and smoke respectively. Cylinder peak pressures, heat release rate, ignition delay and combustion duration of MD10+ Rh2O3 are recorded to be considerably improved. Thus, using the nanoparticle added mosambi peels pyro oil (NMPPO) blended with diesel as an alternative fuel could impart an eco-friendly, efficient and improved engine operation.","PeriodicalId":14391,"journal":{"name":"International Journal of Vehicle Structures and Systems","volume":"104 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Structures and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4273/ijvss.14.7.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
This research article presents a comparative experimental study on the performance, exhaust emission and combustion characteristics of a CI engine fuelled with neat diesel and with three kinds of blends viz. MD10 (neat diesel with 10% mosambi peel pyro oil), MDM10 (neat diesel with 10% mosambi peel pyro oil and 10% methanol), MD10+Rh2O3 (neat diesel with 10% mosambi peel pyro oil and nano rhodium oxide fuel additive). The experiments were conducted on a direct injection single-cylinder water-cooled four-stroke diesel engine operated at a constant engine speed of 1500 rpm and under varied brake power conditions. The results showed that MD10+Rh2O3 outperformed the rest in terms of all the performance, emission and combustion characteristics. MD10+Rh2O3 was found to have achieved, 5% higher brake thermal efficiency, 18.5% reduced SFC and 8% reduced exhaust gas temperatures respectively. This fuel has also achieved 10.5%, 5.5%, 9.45%, 11% marginal drop in noxious pollutants such as CO (Carbon Monoxide), unburnt HC (Hydrocarbons), NOx and smoke respectively. Cylinder peak pressures, heat release rate, ignition delay and combustion duration of MD10+ Rh2O3 are recorded to be considerably improved. Thus, using the nanoparticle added mosambi peels pyro oil (NMPPO) blended with diesel as an alternative fuel could impart an eco-friendly, efficient and improved engine operation.
期刊介绍:
The International Journal of Vehicle Structures and Systems (IJVSS) is a quarterly journal and is published by MechAero Foundation for Technical Research and Education Excellence (MAFTREE), based in Chennai, India. MAFTREE is engaged in promoting the advancement of technical research and education in the field of mechanical, aerospace, automotive and its related branches of engineering, science, and technology. IJVSS disseminates high quality original research and review papers, case studies, technical notes and book reviews. All published papers in this journal will have undergone rigorous peer review. IJVSS was founded in 2009. IJVSS is available in Print (ISSN 0975-3060) and Online (ISSN 0975-3540) versions. The prime focus of the IJVSS is given to the subjects of modelling, analysis, design, simulation, optimization and testing of structures and systems of the following: 1. Automotive vehicle including scooter, auto, car, motor sport and racing vehicles, 2. Truck, trailer and heavy vehicles for road transport, 3. Rail, bus, tram, emerging transit and hybrid vehicle, 4. Terrain vehicle, armoured vehicle, construction vehicle and Unmanned Ground Vehicle, 5. Aircraft, launch vehicle, missile, airship, spacecraft, space exploration vehicle, 6. Unmanned Aerial Vehicle, Micro Aerial Vehicle, 7. Marine vehicle, ship and yachts and under water vehicles.