Automatically Generating Search Heuristics for Concolic Testing

Sooyoung Cha, Seongjoon Hong, Junhee Lee, Hakjoo Oh
{"title":"Automatically Generating Search Heuristics for Concolic Testing","authors":"Sooyoung Cha, Seongjoon Hong, Junhee Lee, Hakjoo Oh","doi":"10.1145/3180155.3180166","DOIUrl":null,"url":null,"abstract":"We present a technique to automatically generate search heuristics for concolic testing. A key challenge in concolic testing is how to effectively explore the program's execution paths to achieve high code coverage in a limited time budget. Concolic testing employs a search heuristic to address this challenge, which favors exploring particular types of paths that are most likely to maximize the final coverage. However, manually designing a good search heuristic is nontrivial and typically ends up with suboptimal and unstable outcomes. The goal of this paper is to overcome this shortcoming of concolic testing by automatically generating search heuristics. We define a class of search heuristics, namely a parameterized heuristic, and present an algorithm that efficiently finds an optimal heuristic for each subject program. Experimental results with open-source C programs show that our technique successfully generates search heuristics that significantly outperform existing manually-crafted heuristics in terms of branch coverage and bug-finding.","PeriodicalId":6560,"journal":{"name":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","volume":"10 1","pages":"1244-1254"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3180155.3180166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We present a technique to automatically generate search heuristics for concolic testing. A key challenge in concolic testing is how to effectively explore the program's execution paths to achieve high code coverage in a limited time budget. Concolic testing employs a search heuristic to address this challenge, which favors exploring particular types of paths that are most likely to maximize the final coverage. However, manually designing a good search heuristic is nontrivial and typically ends up with suboptimal and unstable outcomes. The goal of this paper is to overcome this shortcoming of concolic testing by automatically generating search heuristics. We define a class of search heuristics, namely a parameterized heuristic, and present an algorithm that efficiently finds an optimal heuristic for each subject program. Experimental results with open-source C programs show that our technique successfully generates search heuristics that significantly outperform existing manually-crafted heuristics in terms of branch coverage and bug-finding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动生成搜索启发式的集合测试
提出了一种自动生成搜索启发式的方法。concolic测试中的一个关键挑战是如何有效地探索程序的执行路径,以在有限的时间预算内实现高代码覆盖率。Concolic测试使用搜索启发式来解决这个问题,它倾向于探索最有可能最大化最终覆盖率的特定类型的路径。然而,手动设计一个好的搜索启发式是非常重要的,并且通常会以次优和不稳定的结果告终。本文的目标是通过自动生成搜索启发式来克服集合测试的这一缺点。我们定义了一类搜索启发式算法,即参数化启发式算法,并给出了一种针对每个主题程序有效地寻找最优启发式算法的算法。使用开源C程序的实验结果表明,我们的技术成功地生成了搜索启发式,在分支覆盖和bug查找方面,它明显优于现有的手工制作的启发式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Launch-Mode-Aware Context-Sensitive Activity Transition Analysis A Combinatorial Approach for Exposing Off-Nominal Behaviors Perses: Syntax-Guided Program Reduction Fine-Grained Test Minimization From UI Design Image to GUI Skeleton: A Neural Machine Translator to Bootstrap Mobile GUI Implementation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1