ID-Seg: an infant deep learning-based segmentation framework to improve limbic structure estimates.

Q1 Computer Science Brain Informatics Pub Date : 2022-05-28 DOI:10.1186/s40708-022-00161-9
Yun Wang, Fateme Sadat Haghpanah, Xuzhe Zhang, Katie Santamaria, Gabriela Koch da Costa Aguiar Alves, Elizabeth Bruno, Natalie Aw, Alexis Maddocks, Cristiane S Duarte, Catherine Monk, Andrew Laine, Jonathan Posner
{"title":"ID-Seg: an infant deep learning-based segmentation framework to improve limbic structure estimates.","authors":"Yun Wang, Fateme Sadat Haghpanah, Xuzhe Zhang, Katie Santamaria, Gabriela Koch da Costa Aguiar Alves, Elizabeth Bruno, Natalie Aw, Alexis Maddocks, Cristiane S Duarte, Catherine Monk, Andrew Laine, Jonathan Posner","doi":"10.1186/s40708-022-00161-9","DOIUrl":null,"url":null,"abstract":"<p><p>Infant brain magnetic resonance imaging (MRI) is a promising approach for studying early neurodevelopment. However, segmenting small regions such as limbic structures is challenging due to their low inter-regional contrast and high curvature. MRI studies of the adult brain have successfully applied deep learning techniques to segment limbic structures, and similar deep learning models are being leveraged for infant studies. However, these deep learning-based infant MRI segmentation models have generally been derived from small datasets, and may suffer from generalization problems. Moreover, the accuracy of segmentations derived from these deep learning models relative to more standard Expectation-Maximization approaches has not been characterized. To address these challenges, we leveraged a large, public infant MRI dataset (n = 473) and the transfer-learning technique to first pre-train a deep convolutional neural network model on two limbic structures: amygdala and hippocampus. Then we used a leave-one-out cross-validation strategy to fine-tune the pre-trained model and evaluated it separately on two independent datasets with manual labels. We term this new approach the Infant Deep learning SEGmentation Framework (ID-Seg). ID-Seg performed well on both datasets with a mean dice similarity score (DSC) of 0.87, a mean intra-class correlation (ICC) of 0.93, and a mean average surface distance (ASD) of 0.31 mm. Compared to the Developmental Human Connectome pipeline (dHCP) pipeline, ID-Seg significantly improved segmentation accuracy. In a third infant MRI dataset (n = 50), we used ID-Seg and dHCP separately to estimate amygdala and hippocampus volumes and shapes. The estimates derived from ID-seg, relative to those from the dHCP, showed stronger associations with behavioral problems assessed in these infants at age 2. In sum, ID-Seg consistently performed well on two different datasets with an 0.87 DSC, however, multi-site testing and extension for brain regions beyond the amygdala and hippocampus are still needed.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"3 1","pages":"12"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9148335/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-022-00161-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Infant brain magnetic resonance imaging (MRI) is a promising approach for studying early neurodevelopment. However, segmenting small regions such as limbic structures is challenging due to their low inter-regional contrast and high curvature. MRI studies of the adult brain have successfully applied deep learning techniques to segment limbic structures, and similar deep learning models are being leveraged for infant studies. However, these deep learning-based infant MRI segmentation models have generally been derived from small datasets, and may suffer from generalization problems. Moreover, the accuracy of segmentations derived from these deep learning models relative to more standard Expectation-Maximization approaches has not been characterized. To address these challenges, we leveraged a large, public infant MRI dataset (n = 473) and the transfer-learning technique to first pre-train a deep convolutional neural network model on two limbic structures: amygdala and hippocampus. Then we used a leave-one-out cross-validation strategy to fine-tune the pre-trained model and evaluated it separately on two independent datasets with manual labels. We term this new approach the Infant Deep learning SEGmentation Framework (ID-Seg). ID-Seg performed well on both datasets with a mean dice similarity score (DSC) of 0.87, a mean intra-class correlation (ICC) of 0.93, and a mean average surface distance (ASD) of 0.31 mm. Compared to the Developmental Human Connectome pipeline (dHCP) pipeline, ID-Seg significantly improved segmentation accuracy. In a third infant MRI dataset (n = 50), we used ID-Seg and dHCP separately to estimate amygdala and hippocampus volumes and shapes. The estimates derived from ID-seg, relative to those from the dHCP, showed stronger associations with behavioral problems assessed in these infants at age 2. In sum, ID-Seg consistently performed well on two different datasets with an 0.87 DSC, however, multi-site testing and extension for brain regions beyond the amygdala and hippocampus are still needed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ID-Seg:一个基于婴儿深度学习的分割框架,用于改善边缘结构的估计。
婴儿脑磁共振成像(MRI)是研究早期神经发育的一种很有前途的方法。然而,分割像边缘结构这样的小区域是具有挑战性的,因为它们的区域间对比度低,曲率高。成人大脑的MRI研究已经成功地将深度学习技术应用于边缘结构的分割,类似的深度学习模型也被用于婴儿研究。然而,这些基于深度学习的婴儿MRI分割模型通常来自小数据集,并且可能存在泛化问题。此外,与更标准的期望最大化方法相比,这些深度学习模型的分割精度尚未得到表征。为了应对这些挑战,我们利用了一个大型的公开婴儿MRI数据集(n = 473)和迁移学习技术,首先在杏仁核和海马体这两个边缘结构上预训练了一个深度卷积神经网络模型。然后,我们使用留一交叉验证策略对预训练模型进行微调,并在两个手动标签的独立数据集上分别对其进行评估。我们将这种新方法称为婴儿深度学习分割框架(ID-Seg)。ID-Seg在两个数据集上表现良好,平均骰子相似度评分(DSC)为0.87,平均类内相关性(ICC)为0.93,平均平均表面距离(ASD)为0.31 mm。与Developmental Human Connectome pipeline (dHCP) pipeline相比,ID-Seg显著提高了分割精度。在第三个婴儿MRI数据集(n = 50)中,我们分别使用ID-Seg和dHCP来估计杏仁核和海马的体积和形状。从ID-seg中得出的估计值,相对于从dHCP中得出的估计值,显示出与这些婴儿2岁时的行为问题有更强的关联。综上所述,ID-Seg在两种不同的数据集上均表现良好,DSC为0.87,但仍需要对杏仁核和海马体以外的大脑区域进行多位点测试和扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Brain Informatics
Brain Informatics Computer Science-Computer Science Applications
CiteScore
9.50
自引率
0.00%
发文量
27
审稿时长
13 weeks
期刊介绍: Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing
期刊最新文献
Rethinking the residual approach: leveraging statistical learning to operationalize cognitive resilience in Alzheimer's disease. CalciumZero: a toolbox for fluorescence calcium imaging on iPSC derived brain organoids. Blockchain-enabled digital twin system for brain stroke prediction. A temporal-spectral graph convolutional neural network model for EEG emotion recognition within and across subjects. Enhancing cross-subject emotion recognition precision through unimodal EEG: a novel emotion preceptor model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1