Mylarappa M , N. Raghavendra , N.R. Bhumika , C.H. Chaithra , B.N. Nagalaxmi , K.N. Shravana Kumara
{"title":"Study of ZnO nanoparticle-supported clay minerals for electrochemical sensors, photocatalysis, and antioxidant applications","authors":"Mylarappa M , N. Raghavendra , N.R. Bhumika , C.H. Chaithra , B.N. Nagalaxmi , K.N. Shravana Kumara","doi":"10.1016/j.chphma.2023.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>In view of the current study's demonstration of the synthesis of clay-doped ZnO composites, we present a low-cost method for producing clay-metal oxide (clay/ZnO). Utilizing the solution combustion technique, a composite of clay/ZnO was produced utilizing citric acid as both a fuel and a complexing agent. The hexagonal unit cell structure of the created clay/ZnO may be seen using XRD patterns. The ZnO-infused clay was visible in FE-SEM micrographs as homogenous, sphere-shaped ZnO. The possible involvement of clay/ZnO photocatalytic activity in the UV-induced photodegradation of malachite green dye was investigated. The 90% degradation rate shows the composite's outstanding photocatalytic degradation capacity. The resulting substance was electrochemically analyzed using a constructed electrode in 0.1 M KOH electrolyte. It increased its sensor capabilities, which now include chemical and biomolecule sensors, and it excelled in cyclic voltammetry-based redox potential studies. To efficiently evaluate chemically synthesized NPs for electrochemical, sensing, and photocatalytic applications, this study intends to create a solution combustion procedure for the synthesis of clay/ZnO nanocomposite using urea as fuel.</p></div>","PeriodicalId":100236,"journal":{"name":"ChemPhysMater","volume":"3 1","pages":"Pages 83-93"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772571523000360/pdfft?md5=17a978ff90ea674cdf63e429d3802e20&pid=1-s2.0-S2772571523000360-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhysMater","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772571523000360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In view of the current study's demonstration of the synthesis of clay-doped ZnO composites, we present a low-cost method for producing clay-metal oxide (clay/ZnO). Utilizing the solution combustion technique, a composite of clay/ZnO was produced utilizing citric acid as both a fuel and a complexing agent. The hexagonal unit cell structure of the created clay/ZnO may be seen using XRD patterns. The ZnO-infused clay was visible in FE-SEM micrographs as homogenous, sphere-shaped ZnO. The possible involvement of clay/ZnO photocatalytic activity in the UV-induced photodegradation of malachite green dye was investigated. The 90% degradation rate shows the composite's outstanding photocatalytic degradation capacity. The resulting substance was electrochemically analyzed using a constructed electrode in 0.1 M KOH electrolyte. It increased its sensor capabilities, which now include chemical and biomolecule sensors, and it excelled in cyclic voltammetry-based redox potential studies. To efficiently evaluate chemically synthesized NPs for electrochemical, sensing, and photocatalytic applications, this study intends to create a solution combustion procedure for the synthesis of clay/ZnO nanocomposite using urea as fuel.