{"title":"Debugging Classical Ontologies Using Defeasible Reasoning Tools","authors":"Simone Coetzer, K. Britz","doi":"10.3233/faia210374","DOIUrl":null,"url":null,"abstract":"A successful application of ontologies relies on representing as much accurate and relevant domain knowledge as possible, while maintaining logical consistency. As the successful implementation of a real-world ontology is likely to contain many concepts and intricate relationships between the concepts, it is necessary to follow a methodology for debugging and refining the ontology. Many ontology debugging approaches have been developed to help the knowledge engineer pinpoint the cause of logical inconsistencies and rectify them in a strategic way. We show that existing debugging approaches can lead to unintuitive results, which may lead the knowledge engineer to opt for deleting potentially crucial and nuanced knowledge. We provide a methodological and design foundation for weakening faulty axioms in a strategic way using defeasible reasoning tools. Our methodology draws from Rodler’s interactive ontology debugging approach and extends this approach by creating a methodology to systematically find conflict resolution recommendations. Importantly, our goal is not to convert a classical ontology to a defeasible ontology. Rather, we use the definition of exceptionality of a concept, which is central to the semantics of defeasible description logics, and the associated algorithm to determine the extent of a concept’s exceptionality (their ranking); then, starting with the statements containing the most general concepts (the least exceptional concepts) weakened versions of the original statements are constructed; this is done until all inconsistencies have been resolved.","PeriodicalId":90829,"journal":{"name":"Formal ontology in information systems : proceedings of the ... International Conference. FOIS (Conference)","volume":"29 1","pages":"97-111"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formal ontology in information systems : proceedings of the ... International Conference. FOIS (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/faia210374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A successful application of ontologies relies on representing as much accurate and relevant domain knowledge as possible, while maintaining logical consistency. As the successful implementation of a real-world ontology is likely to contain many concepts and intricate relationships between the concepts, it is necessary to follow a methodology for debugging and refining the ontology. Many ontology debugging approaches have been developed to help the knowledge engineer pinpoint the cause of logical inconsistencies and rectify them in a strategic way. We show that existing debugging approaches can lead to unintuitive results, which may lead the knowledge engineer to opt for deleting potentially crucial and nuanced knowledge. We provide a methodological and design foundation for weakening faulty axioms in a strategic way using defeasible reasoning tools. Our methodology draws from Rodler’s interactive ontology debugging approach and extends this approach by creating a methodology to systematically find conflict resolution recommendations. Importantly, our goal is not to convert a classical ontology to a defeasible ontology. Rather, we use the definition of exceptionality of a concept, which is central to the semantics of defeasible description logics, and the associated algorithm to determine the extent of a concept’s exceptionality (their ranking); then, starting with the statements containing the most general concepts (the least exceptional concepts) weakened versions of the original statements are constructed; this is done until all inconsistencies have been resolved.