Exposure of Restore-L camera optical elements to a simulated orbital radiation environment

K. Miller, J. Heaney, J. Lauenstein, S. K. Brown, K. M. O'Connor, S. K. Miller
{"title":"Exposure of Restore-L camera optical elements to a simulated orbital radiation environment","authors":"K. Miller, J. Heaney, J. Lauenstein, S. K. Brown, K. M. O'Connor, S. K. Miller","doi":"10.1117/12.2531108","DOIUrl":null,"url":null,"abstract":"This paper reports on the exposure of visible wavelength camera optical elements to a simulated orbital radiation environment in support of the Restore-L flight project at NASA’s Goddard Space Flight Center. Borosilicate glasses with various metal oxide dopants - S-LAL8, S-LAL18, N-SF1, and the polycarbonate material Makrolon GP were exposed to electrons and protons of varying energies. Low energy (E ≤ 10keV) charged particles were used primarily to assess degradation to the antireflective coatings of the optical elements. High energy (E ~ 1 MeV) charged particles were used to evaluate degradation to the bulk material. Elements of S-LAL18, N-SF1, LaK9G15, and Makrolon GP were exposed to a representative atomic oxygen rich environment. Elements of S-LAL8 and Makrolon GP were exposed to intense ultraviolet radiation. Pre- and post-exposure transmittance measurements were used to quantify the effects on the elements tested in the simulated environment over the 0.3 to 1.2 micron wavelength range. Our measurement results will be discussed in the context of their robustness to the orbital environment and the known chemical constituents of the materials tested.","PeriodicalId":10843,"journal":{"name":"Current Developments in Lens Design and Optical Engineering XX","volume":"399 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Developments in Lens Design and Optical Engineering XX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2531108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper reports on the exposure of visible wavelength camera optical elements to a simulated orbital radiation environment in support of the Restore-L flight project at NASA’s Goddard Space Flight Center. Borosilicate glasses with various metal oxide dopants - S-LAL8, S-LAL18, N-SF1, and the polycarbonate material Makrolon GP were exposed to electrons and protons of varying energies. Low energy (E ≤ 10keV) charged particles were used primarily to assess degradation to the antireflective coatings of the optical elements. High energy (E ~ 1 MeV) charged particles were used to evaluate degradation to the bulk material. Elements of S-LAL18, N-SF1, LaK9G15, and Makrolon GP were exposed to a representative atomic oxygen rich environment. Elements of S-LAL8 and Makrolon GP were exposed to intense ultraviolet radiation. Pre- and post-exposure transmittance measurements were used to quantify the effects on the elements tested in the simulated environment over the 0.3 to 1.2 micron wavelength range. Our measurement results will be discussed in the context of their robustness to the orbital environment and the known chemical constituents of the materials tested.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Restore-L相机光学元件在模拟轨道辐射环境下的曝光
本文报道了可见光波长相机光学元件在模拟轨道辐射环境下的曝光,以支持美国宇航局戈达德太空飞行中心的Restore-L飞行项目。将含有不同金属氧化物掺杂剂(S-LAL8、S-LAL18、N-SF1)的硼硅酸盐玻璃和聚碳酸酯材料Makrolon GP暴露于不同能量的电子和质子中。低能(E≤10keV)带电粒子主要用于评估光学元件抗反射涂层的降解情况。用高能(E ~ 1mev)带电粒子评价了对大块材料的降解。将S-LAL18、N-SF1、LaK9G15和Makrolon GP元素暴露在具有代表性的富原子氧环境中。将S-LAL8和Makrolon GP元素暴露于强紫外辐射下。在0.3至1.2微米波长范围内,使用曝光前和曝光后透射率测量来量化对模拟环境中测试元素的影响。我们的测量结果将在其对轨道环境的稳健性和测试材料的已知化学成分的背景下进行讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A laser pumping double-light-source module with photon-recycling Optical systems for large-aperture phased laser array including diffractive optics Deployment of combined higher order aberrations to extend the depth of focus of lenses Exposure of Restore-L camera optical elements to a simulated orbital radiation environment Application of GPUs in optical design software
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1