QB2OLAP: Enabling OLAP on Statistical Linked Open Data

Jovan Varga, Lorena Etcheverry, A. Vaisman, Oscar Romero, T. Pedersen, Christian Thomsen
{"title":"QB2OLAP: Enabling OLAP on Statistical Linked Open Data","authors":"Jovan Varga, Lorena Etcheverry, A. Vaisman, Oscar Romero, T. Pedersen, Christian Thomsen","doi":"10.1109/ICDE.2016.7498341","DOIUrl":null,"url":null,"abstract":"Publication and sharing of multidimensional (MD) data on the Semantic Web (SW) opens new opportunities for the use of On-Line Analytical Processing (OLAP). The RDF Data Cube (QB) vocabulary, the current standard for statistical data publishing, however, lacks key MD concepts such as dimension hierarchies and aggregate functions. QB4OLAP was proposed to remedy this. However, QB4OLAP requires extensive manual annotation and users must still write queries in SPARQL, the standard query language for RDF, which typical OLAP users are not familiar with. In this demo, we present QB2OLAP, a tool for enabling OLAP on existing QB data. Without requiring any RDF, QB(4OLAP), or SPARQL skills, it allows semi-automatic transformation of a QB data set into a QB4OLAP one via enrichment with QB4OLAP semantics, exploration of the enriched schema, and querying with the high-level OLAP language QL that exploits the QB4OLAP semantics and is automatically translated to SPARQL.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"2 1","pages":"1346-1349"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Publication and sharing of multidimensional (MD) data on the Semantic Web (SW) opens new opportunities for the use of On-Line Analytical Processing (OLAP). The RDF Data Cube (QB) vocabulary, the current standard for statistical data publishing, however, lacks key MD concepts such as dimension hierarchies and aggregate functions. QB4OLAP was proposed to remedy this. However, QB4OLAP requires extensive manual annotation and users must still write queries in SPARQL, the standard query language for RDF, which typical OLAP users are not familiar with. In this demo, we present QB2OLAP, a tool for enabling OLAP on existing QB data. Without requiring any RDF, QB(4OLAP), or SPARQL skills, it allows semi-automatic transformation of a QB data set into a QB4OLAP one via enrichment with QB4OLAP semantics, exploration of the enriched schema, and querying with the high-level OLAP language QL that exploits the QB4OLAP semantics and is automatically translated to SPARQL.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
QB2OLAP:在统计关联开放数据上启用OLAP
在语义网(SW)上发布和共享多维(MD)数据为在线分析处理(OLAP)的使用提供了新的机会。然而,统计数据发布的当前标准RDF Data Cube词汇表缺乏关键的MD概念,如维度层次结构和聚合函数。提出了QB4OLAP来解决这个问题。然而,QB4OLAP需要大量的手工注释,而且用户仍然必须用SPARQL (RDF的标准查询语言)编写查询,而典型的OLAP用户并不熟悉SPARQL。在本演示中,我们将介绍QB2OLAP,这是一个在现有QB数据上启用OLAP的工具。不需要任何RDF、QB(4OLAP)或SPARQL技能,它允许将QB数据集半自动地转换为QB4OLAP数据集,方法是使用QB4OLAP语义进行充实、探索经过充实的模式,以及使用利用QB4OLAP语义并自动转换为SPARQL的高级OLAP语言QL进行查询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data profiling SEED: A system for entity exploration and debugging in large-scale knowledge graphs TemProRA: Top-k temporal-probabilistic results analysis Durable graph pattern queries on historical graphs SCouT: Scalable coupled matrix-tensor factorization - algorithm and discoveries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1