Drop Simulation and Stress Analysis of MEMS Devices

T. Hauck, G. Li, A. McNeill, H. Knoll, M. Ebert, J. Bagdahn
{"title":"Drop Simulation and Stress Analysis of MEMS Devices","authors":"T. Hauck, G. Li, A. McNeill, H. Knoll, M. Ebert, J. Bagdahn","doi":"10.1109/ESIME.2006.1643999","DOIUrl":null,"url":null,"abstract":"Drop testing of micromachined accelerometers from the height of a table top to a solid surface shows that a moderate impact can result in severe damage of transducer elements. The relative high stiffness of the accelerometer device in combination with a high contact stiffness of the solid surface cause extremely high acceleration pulses at the impact. This paper presents a detailed analysis of the consequences of dropping a micromachined transducer structure to a solid surface. The analysis is composed of experimental testing and numerical simulation. Impact forces are measured for bare sensor chips and molded sensor devices by means of an instrumented drop test. Structural simulation models are generated for micromachined transducers. These models consider the dynamics of the deformation behavior of moveable elements including a travel stop and associated possible impact inside the sensor element. Maximum stresses are calculated in critical regions of the transducer. Weibull theory and statistical distributions of material strength are considered in order to predict the probability for crack initiation due to stress concentrations","PeriodicalId":60796,"journal":{"name":"微纳电子与智能制造","volume":"34 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"微纳电子与智能制造","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/ESIME.2006.1643999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Drop testing of micromachined accelerometers from the height of a table top to a solid surface shows that a moderate impact can result in severe damage of transducer elements. The relative high stiffness of the accelerometer device in combination with a high contact stiffness of the solid surface cause extremely high acceleration pulses at the impact. This paper presents a detailed analysis of the consequences of dropping a micromachined transducer structure to a solid surface. The analysis is composed of experimental testing and numerical simulation. Impact forces are measured for bare sensor chips and molded sensor devices by means of an instrumented drop test. Structural simulation models are generated for micromachined transducers. These models consider the dynamics of the deformation behavior of moveable elements including a travel stop and associated possible impact inside the sensor element. Maximum stresses are calculated in critical regions of the transducer. Weibull theory and statistical distributions of material strength are considered in order to predict the probability for crack initiation due to stress concentrations
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MEMS器件跌落仿真及应力分析
微机械加速度计从桌面的高度跌落到固体表面的测试表明,适度的撞击会导致传感器元件的严重损坏。加速度计装置的相对高刚度与固体表面的高接触刚度相结合,在撞击时产生极高的加速度脉冲。本文详细分析了将微机械传感器结构跌落到固体表面的后果。分析由实验测试和数值模拟两部分组成。冲击力是通过仪器跌落测试对裸传感器芯片和模制传感器设备进行测量的。建立了微机械换能器的结构仿真模型。这些模型考虑了可移动元件的动态变形行为,包括行程停止和相关的传感器元件内部可能的冲击。在换能器的关键区域计算最大应力。考虑了威布尔理论和材料强度的统计分布,以预测应力集中引起裂纹萌生的概率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
145
期刊最新文献
Front Matter: Volume 12072 Front Matter: Volume 12073 Multi-Energy Domain Modeling of Microdevices: Virtual Prototyping by Predictive Simulation A Monte Carlo Investigation of Nanocrystal Memory Reliability Difficulties on the estimation of the thermal structure function from noisy thermal impedance transients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1