All-digital hybrid temperature sensor network for dense thermal monitoring

Seungwook Paek, Wongyu Shin, Jaeyoung Lee, Hyo-Eun Kim, Jun-Seok Park, L. Kim
{"title":"All-digital hybrid temperature sensor network for dense thermal monitoring","authors":"Seungwook Paek, Wongyu Shin, Jaeyoung Lee, Hyo-Eun Kim, Jun-Seok Park, L. Kim","doi":"10.1109/ISSCC.2013.6487726","DOIUrl":null,"url":null,"abstract":"Technology scaling and many-core design trends demand detailed information regarding the spatial temperature distribution, which is essential for dynamic thermal management [1,2]. The number of on-chip temperature sensors in high-performance processors is increasing, with state-of-the-art commercial processors embedding up to 44 on-chip sensors [3] and the number is likely to increase in the future (Fig. 14.7.1(a)). We observe two significant challenges in on-chip temperature sensing: 1) the increasing number of sensors, and 2) placing them in a regular manner (not solely on the potential hotspots). The number of sensors is mostly constrained by their area. Indeed, the sensor area is difficult to shrink since large delay lines or a BJT with a large ADC, and digital circuits are required to generate a proportional-to-absolute-temperature (PTAT) signal [2,5,6]. Many-core processor architectures give rise to the second challenge, namely, the hotspot locations within many-core processors are difficult to predict since we cannot determine the task allocation (and heat) profile at design time [2]. Consequently, an area-efficient dense thermal monitoring technique is desirable for next-generation processors.","PeriodicalId":6378,"journal":{"name":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","volume":"193 1","pages":"260-261"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2013.6487726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Technology scaling and many-core design trends demand detailed information regarding the spatial temperature distribution, which is essential for dynamic thermal management [1,2]. The number of on-chip temperature sensors in high-performance processors is increasing, with state-of-the-art commercial processors embedding up to 44 on-chip sensors [3] and the number is likely to increase in the future (Fig. 14.7.1(a)). We observe two significant challenges in on-chip temperature sensing: 1) the increasing number of sensors, and 2) placing them in a regular manner (not solely on the potential hotspots). The number of sensors is mostly constrained by their area. Indeed, the sensor area is difficult to shrink since large delay lines or a BJT with a large ADC, and digital circuits are required to generate a proportional-to-absolute-temperature (PTAT) signal [2,5,6]. Many-core processor architectures give rise to the second challenge, namely, the hotspot locations within many-core processors are difficult to predict since we cannot determine the task allocation (and heat) profile at design time [2]. Consequently, an area-efficient dense thermal monitoring technique is desirable for next-generation processors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于密集热监测的全数字混合温度传感器网络
技术扩展和许多核心设计趋势需要有关空间温度分布的详细信息,这对于动态热管理至关重要[1,2]。高性能处理器中片上温度传感器的数量正在增加,最先进的商用处理器嵌入了多达44个片上温度传感器[3],未来这个数字可能会增加(图14.7.1(a))。我们观察到片上温度传感的两个重大挑战:1)传感器数量的增加,以及2)将它们以常规方式放置(而不仅仅是在潜在的热点上)。传感器的数量主要受其面积的限制。实际上,传感器面积很难缩小,因为需要大延迟线或带有大ADC的BJT和数字电路来产生比例绝对温度(PTAT)信号[2,5,6]。多核处理器架构带来了第二个挑战,即多核处理器内的热点位置难以预测,因为我们无法在设计时确定任务分配(和热量)配置[2]。因此,一种面积高效的密集热监测技术是下一代处理器所需要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A CMOS dual-switching power-supply modulator with 8% efficiency improvement for 20MHz LTE Envelope Tracking RF power amplifiers A 3.4pJ FeRAM-enabled D flip-flop in 0.13µm CMOS for nonvolatile processing in digital systems Razor-lite: A side-channel error-detection register for timing-margin recovery in 45nm SOI CMOS Self-super-cutoff power gating with state retention on a 0.3V 0.29fJ/cycle/gate 32b RISC core in 0.13µm CMOS A fully intraocular 0.0169mm2/pixel 512-channel self-calibrating epiretinal prosthesis in 65nm CMOS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1