{"title":"SQLi Detection with ML: A data-source perspective","authors":"Balázs Pejó, Nikolett Kapui","doi":"10.48550/arXiv.2304.12115","DOIUrl":null,"url":null,"abstract":"Almost 50 years after the invention of SQL, injection attacks are still top-tier vulnerabilities of today's ICT systems. Consequently, SQLi detection is still an active area of research, where the most recent works incorporate machine learning techniques into the proposed solutions. In this work, we highlight the shortcomings of the previous ML-based results focusing on four aspects: the evaluation methods, the optimization of the model parameters, the distribution of utilized datasets, and the feature selection. Since no single work explored all of these aspects satisfactorily, we fill this gap and provide an in-depth and comprehensive empirical analysis. Moreover, we cross-validate the trained models by using data from other distributions. This aspect of ML models (trained for SQLi detection) was never studied. Yet, the sensitivity of the model's performance to this is crucial for any real-life deployment. Finally, we validate our findings on a real-world industrial SQLi dataset.","PeriodicalId":74779,"journal":{"name":"SECRYPT ... : proceedings of the International Conference on Security and Cryptography. International Conference on Security and Cryptography","volume":"5 1","pages":"642-648"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SECRYPT ... : proceedings of the International Conference on Security and Cryptography. International Conference on Security and Cryptography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.12115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Almost 50 years after the invention of SQL, injection attacks are still top-tier vulnerabilities of today's ICT systems. Consequently, SQLi detection is still an active area of research, where the most recent works incorporate machine learning techniques into the proposed solutions. In this work, we highlight the shortcomings of the previous ML-based results focusing on four aspects: the evaluation methods, the optimization of the model parameters, the distribution of utilized datasets, and the feature selection. Since no single work explored all of these aspects satisfactorily, we fill this gap and provide an in-depth and comprehensive empirical analysis. Moreover, we cross-validate the trained models by using data from other distributions. This aspect of ML models (trained for SQLi detection) was never studied. Yet, the sensitivity of the model's performance to this is crucial for any real-life deployment. Finally, we validate our findings on a real-world industrial SQLi dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用ML进行sql检测:一个数据源透视图
在SQL发明近50年后,注入攻击仍然是当今ICT系统的顶级漏洞。因此,SQLi检测仍然是一个活跃的研究领域,其中最新的工作将机器学习技术纳入提出的解决方案。本文着重从评价方法、模型参数优化、利用数据集分布和特征选择四个方面分析了以往基于机器学习的结果的不足。由于没有一项工作令人满意地探讨了所有这些方面,我们填补了这一空白,并提供了深入而全面的实证分析。此外,我们使用来自其他分布的数据来交叉验证训练好的模型。ML模型的这一方面(为SQLi检测而训练)从未被研究过。然而,模型性能对这一点的敏感性对于任何实际部署都是至关重要的。最后,我们在一个真实的工业SQLi数据集上验证了我们的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Illicit Darkweb Classification via Natural-language Processing: Classifying Illicit Content of Webpages based on Textual Information When the Few Outweigh the Many: Illicit Content Recognition with Few-Shot Learning SQLi Detection with ML: A data-source perspective Combining Generators of Adversarial Malware Examples to Increase Evasion Rate CAPoW: Context-Aware AI-Assisted Proof of Work based DDoS Defense
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1