A fixed-bed column study of solid waste-based calcium silicate hydrate for the phosphate removal

Alemu Gizaw, F. Zewge, Y. Chebude, Melakuu Tesfaye, A. Mekonnen
{"title":"A fixed-bed column study of solid waste-based calcium silicate hydrate for the phosphate removal","authors":"Alemu Gizaw, F. Zewge, Y. Chebude, Melakuu Tesfaye, A. Mekonnen","doi":"10.2166/aqua.2022.167","DOIUrl":null,"url":null,"abstract":"\n The calcium silicate hydrate (CSH) was synthesized from the solid waste residue (SWR) of the Alum Factory, and was used for phosphate abatement from an aqueous solution. Fixed-bed column adsorption experiments were conducted at different flow rates (5, 7.5, and 10 mL/min) and bed depths (6, 9, and 12 cm) at an initial pH and phosphate concentrations of 5 and 5.5 mg/L, respectively. The breakthrough curve analysis was developed and tabulated for the effects of the flow rate and bed depth. Fixed-bed adsorption models, namely the Thomas model, the Yoon–Nelson model, and Bed Depth Service Time (BDST) model were fitted to the experimental data. The R2 values observed for the Thomas model and the Yoon–Nelson model were 0.96 and 0.98, respectively, at the flow rate of 7.5 mL/min and bed depth of 9 cm with the breakthrough adsorption capacity of 5.67 mg/g. The synthesized CSH was also tested for its phosphate removal efficiency using local wastewater treatment plant effluent. About 1,658 mL of real wastewater was treated for 249 min before the standard threshold limit (1 mg/L) was reached. This study prevails that the synthesized CSH could be applied to remove phosphate from real wastewater under a continuous flow adsorption system.","PeriodicalId":17666,"journal":{"name":"Journal of Water Supply: Research and Technology-Aqua","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply: Research and Technology-Aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/aqua.2022.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The calcium silicate hydrate (CSH) was synthesized from the solid waste residue (SWR) of the Alum Factory, and was used for phosphate abatement from an aqueous solution. Fixed-bed column adsorption experiments were conducted at different flow rates (5, 7.5, and 10 mL/min) and bed depths (6, 9, and 12 cm) at an initial pH and phosphate concentrations of 5 and 5.5 mg/L, respectively. The breakthrough curve analysis was developed and tabulated for the effects of the flow rate and bed depth. Fixed-bed adsorption models, namely the Thomas model, the Yoon–Nelson model, and Bed Depth Service Time (BDST) model were fitted to the experimental data. The R2 values observed for the Thomas model and the Yoon–Nelson model were 0.96 and 0.98, respectively, at the flow rate of 7.5 mL/min and bed depth of 9 cm with the breakthrough adsorption capacity of 5.67 mg/g. The synthesized CSH was also tested for its phosphate removal efficiency using local wastewater treatment plant effluent. About 1,658 mL of real wastewater was treated for 249 min before the standard threshold limit (1 mg/L) was reached. This study prevails that the synthesized CSH could be applied to remove phosphate from real wastewater under a continuous flow adsorption system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
固体废物水合硅酸钙除磷固定床柱研究
以明矾厂固体废渣为原料合成水合硅酸钙(CSH),并将其用于水溶液中的磷酸盐减排。固定床柱吸附实验以不同的流速(5、7.5和10 mL/min)和床深(6、9和12 cm)进行,初始pH和磷酸盐浓度分别为5和5.5 mg/L。针对流量和层深的影响,建立了突破曲线分析并制成了表格。实验数据拟合了固定床吸附模型,即Thomas模型、Yoon-Nelson模型和床深服务时间(BDST)模型。当流速为7.5 mL/min,床深为9 cm,突破吸附量为5.67 mg/g时,Thomas模型和yon - nelson模型的R2分别为0.96和0.98。利用当地污水处理厂的出水,对合成的CSH的除磷效果进行了测试。在达到标准阈值(1 mg/L)之前,实际废水约1,658 mL处理249 min。研究表明,合成的CSH可以在连续流吸附系统下用于实际废水中的磷酸盐去除。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mechanism of oxidative damage in Escherichia coli caused by epigallocatechin gallate (EGCG) in the presence of calcium ions Mechanistic action of pesticides on pests and their consequent effect on fishes and human health with remediation strategies Assessment of water demand and potential water sources to face future water scarcity of hilly regions A data quality assessment framework for drinking water distribution system water quality time series datasets Development and optimization of the dye removal process by Trichoderma reesei using starch effluent as a growth supplement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1