{"title":"Electrochemical Recovery of Silver Using a Simple Cell","authors":"Igor Wachter, Tomáš Štefko","doi":"10.2478/rput-2021-0017","DOIUrl":null,"url":null,"abstract":"Abstract The amount of generated e-waste during the last decades has been steadily raising to the point at which it is highly desirable to obtain the precious metals by recycling the e-waste without the need of exploiting the environment. The rapid development of technology, steep growth of modern facilities with user-friendly electronical devices and a stiff competition between manufacturers are among the main reasons for decreasing the life span of such devices, and subsequently end up as an obsolete waste product. Rapid industrialization and urbanization have also caused many environmental problems, e.g. heavy metal contamination. Silver is one of the precious metals with exceptionally high industrial applications, which makes it an area of research of high interest. Demand for silver continues to grow with progress in the industrialized world, while the world reserves of high-quality silver ores are declining. Although, there are large stocks of low and lean quality silver ores still to be mined, the main goal of this article is to provide a simple, effective and eco-friendly method of silver recovery from e-waste, e.g. electrical circuit breakers using an electrochemical cell. After 20.75 days of the experiment, 1481.5 grams of silver contacts were processed with a final yield of 61.41 % grams of silver dendrite crystals (99.9 % purity).","PeriodicalId":21013,"journal":{"name":"Research Papers Faculty of Materials Science and Technology Slovak University of Technology","volume":"17 1","pages":"158 - 166"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Papers Faculty of Materials Science and Technology Slovak University of Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rput-2021-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The amount of generated e-waste during the last decades has been steadily raising to the point at which it is highly desirable to obtain the precious metals by recycling the e-waste without the need of exploiting the environment. The rapid development of technology, steep growth of modern facilities with user-friendly electronical devices and a stiff competition between manufacturers are among the main reasons for decreasing the life span of such devices, and subsequently end up as an obsolete waste product. Rapid industrialization and urbanization have also caused many environmental problems, e.g. heavy metal contamination. Silver is one of the precious metals with exceptionally high industrial applications, which makes it an area of research of high interest. Demand for silver continues to grow with progress in the industrialized world, while the world reserves of high-quality silver ores are declining. Although, there are large stocks of low and lean quality silver ores still to be mined, the main goal of this article is to provide a simple, effective and eco-friendly method of silver recovery from e-waste, e.g. electrical circuit breakers using an electrochemical cell. After 20.75 days of the experiment, 1481.5 grams of silver contacts were processed with a final yield of 61.41 % grams of silver dendrite crystals (99.9 % purity).