Becoming an engineering education researcher through a kaleidoscope of practice theory perspectives

R. Goldsmith, Guien Miao, S. Daniel, P. Briozzo, Hua Chai, A. Gardner
{"title":"Becoming an engineering education researcher through a kaleidoscope of practice theory perspectives","authors":"R. Goldsmith, Guien Miao, S. Daniel, P. Briozzo, Hua Chai, A. Gardner","doi":"10.1080/22054952.2023.2214456","DOIUrl":null,"url":null,"abstract":"ABSTRACT There is a considerable body of literature on the challenges that are encountered in the transition from technical engineering research to engineering education research. These challenges include conceptual difficulties, shifts in identities and in paradigms, and changes of cultural and social capital. Many of the studies in this area emphasise the importance of having a network of engineering education researchers, but there is little research on what such a network would look like. Our research builds on this by investigating how the Centre for Research in Engineering & IT Education (CREITE) has established conditions which enable the development of engineering education research capabilities across several universities in NSW. Our novel research approach views six case studies of CREITE members through the lens of three practice theories: community of practice; Bourdieu’s theory of practice; and the theory of practice architecture. The findings reveal a kaleidoscopic understanding of what constrains and enables engineering educators to engage with the field of EER, and the pivotal role played by a research group such as CREITE.","PeriodicalId":38191,"journal":{"name":"Australasian Journal of Engineering Education","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australasian Journal of Engineering Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/22054952.2023.2214456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT There is a considerable body of literature on the challenges that are encountered in the transition from technical engineering research to engineering education research. These challenges include conceptual difficulties, shifts in identities and in paradigms, and changes of cultural and social capital. Many of the studies in this area emphasise the importance of having a network of engineering education researchers, but there is little research on what such a network would look like. Our research builds on this by investigating how the Centre for Research in Engineering & IT Education (CREITE) has established conditions which enable the development of engineering education research capabilities across several universities in NSW. Our novel research approach views six case studies of CREITE members through the lens of three practice theories: community of practice; Bourdieu’s theory of practice; and the theory of practice architecture. The findings reveal a kaleidoscopic understanding of what constrains and enables engineering educators to engage with the field of EER, and the pivotal role played by a research group such as CREITE.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过千变万化的实践理论视角,成为一名工程教育研究者
关于从技术工程研究向工程教育研究过渡所遇到的挑战,已有相当多的文献。这些挑战包括概念上的困难、身份和范式的转变,以及文化和社会资本的变化。这一领域的许多研究都强调建立一个工程教育研究人员网络的重要性,但很少有研究表明这样一个网络应该是什么样子的。我们的研究建立在此基础上,通过调查工程与信息技术教育研究中心(CREITE)如何建立条件,使工程教育研究能力在新南威尔士州的几所大学的发展。我们新颖的研究方法通过三种实践理论的视角来看待CREITE成员的六个案例研究:实践社区;布迪厄的实践理论;实践建筑的理论。研究结果揭示了一个千变万化的理解,即是什么限制和使工程教育工作者参与到EER领域,以及CREITE等研究小组所起的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
0.00%
发文量
8
期刊最新文献
ChatGPT, Copilot, Gemini, SciSpace and Wolfram versus higher education assessments: an updated multi-institutional study of the academic integrity impacts of Generative Artificial Intelligence (GenAI) on assessment, teaching and learning in engineering Development of the Bipolar Junction Transistor Diagnostic Test (BJTDT) to explore the second-year undergraduate Myanmar electronic and Thai electrical engineering students’ understanding of BJT working principles and applications Unfolding learning difficulties in engineering drawing problem solving Unfolding learning difficulties in engineering drawing problem solving Recontextualising the teaching learning cycle within engineering education to improve the development of written communication skills
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1