{"title":"Enhanced memetic search for reducing energy consumption in fuzzy flexible job shops","authors":"Pablo García-Gómez, I. G. Rodríguez, C. R. Vela","doi":"10.3233/ica-230699","DOIUrl":null,"url":null,"abstract":"The flexible job shop is a well-known scheduling problem that has historically attracted much research attention both because of its computational complexity and its importance in manufacturing and engineering processes. Here we consider a variant of the problem where uncertainty in operation processing times is modeled using triangular fuzzy numbers. Our objective is to minimize the total energy consumption, which combines the energy required by resources when they are actively processing an operation and the energy consumed by these resources simply for being switched on. To solve this NP-Hard problem, we propose a memetic algorithm, a hybrid metaheuristic method that combines global search with local search. Our focus has been on obtaining an efficient method, capable of obtaining similar solutions quality-wise to the state of the art using a reduced amount of time. To assess the performance of our algorithm, we present an extensive experimental analysis that compares it with previous proposals and evaluates the effect on the search of its different components.","PeriodicalId":50358,"journal":{"name":"Integrated Computer-Aided Engineering","volume":"58 1","pages":"151-167"},"PeriodicalIF":5.8000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Computer-Aided Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ica-230699","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
The flexible job shop is a well-known scheduling problem that has historically attracted much research attention both because of its computational complexity and its importance in manufacturing and engineering processes. Here we consider a variant of the problem where uncertainty in operation processing times is modeled using triangular fuzzy numbers. Our objective is to minimize the total energy consumption, which combines the energy required by resources when they are actively processing an operation and the energy consumed by these resources simply for being switched on. To solve this NP-Hard problem, we propose a memetic algorithm, a hybrid metaheuristic method that combines global search with local search. Our focus has been on obtaining an efficient method, capable of obtaining similar solutions quality-wise to the state of the art using a reduced amount of time. To assess the performance of our algorithm, we present an extensive experimental analysis that compares it with previous proposals and evaluates the effect on the search of its different components.
期刊介绍:
Integrated Computer-Aided Engineering (ICAE) was founded in 1993. "Based on the premise that interdisciplinary thinking and synergistic collaboration of disciplines can solve complex problems, open new frontiers, and lead to true innovations and breakthroughs, the cornerstone of industrial competitiveness and advancement of the society" as noted in the inaugural issue of the journal.
The focus of ICAE is the integration of leading edge and emerging computer and information technologies for innovative solution of engineering problems. The journal fosters interdisciplinary research and presents a unique forum for innovative computer-aided engineering. It also publishes novel industrial applications of CAE, thus helping to bring new computational paradigms from research labs and classrooms to reality. Areas covered by the journal include (but are not limited to) artificial intelligence, advanced signal processing, biologically inspired computing, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, intelligent and adaptive systems, internet-based technologies, knowledge discovery and engineering, machine learning, mechatronics, mobile computing, multimedia technologies, networking, neural network computing, object-oriented systems, optimization and search, parallel processing, robotics virtual reality, and visualization techniques.