I. Trivedi, Dhaval K. Thesiya, A. Esmat, Pradeep Jangir
{"title":"A multiple environment dispatch problem solution using ant colony optimization for micro-grids","authors":"I. Trivedi, Dhaval K. Thesiya, A. Esmat, Pradeep Jangir","doi":"10.1109/ICPACE.2015.7274927","DOIUrl":null,"url":null,"abstract":"Micro-grids have spread in many distribution systems worldwide. They offer safe and reliable operation for their consumers by managing the micro-grids' power generation and trading with the main grid. Furthermore, micro-grids can help in integrating and promoting for Renewable Energy Sources (RES) and reducing the environmental impacts of traditional centralized generation. This paper proposes multiple environment dispatch problem solution in micro-grids using Ant Colony Optimization (ACO) technique to solve the generation dispatch problem. A combined cost optimization scheme is investigated to minimize both operational cost and emission levels while satisfying the micro-grid's load demand. Furthermore, the proposed multiple environment dispatch problem solution is used to evaluate promoting RES implementation in micro-grids despite of their high capital cost using the combined economic emission dispatch problem. The proposed multiple environment dispatch solution was implemented using MatLab and tested on two case studies with and without RES-Wind Turbine-Solar (WT-PV). The obtained results from the proposed technique are compared with those calculated using other Techniques; Gradient to evaluate the proposed method. The outcomes are evaluated and discussed. Finally, conclusions are reported.","PeriodicalId":6644,"journal":{"name":"2015 International Conference on Power and Advanced Control Engineering (ICPACE)","volume":"154 1","pages":"109-115"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Power and Advanced Control Engineering (ICPACE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPACE.2015.7274927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36
Abstract
Micro-grids have spread in many distribution systems worldwide. They offer safe and reliable operation for their consumers by managing the micro-grids' power generation and trading with the main grid. Furthermore, micro-grids can help in integrating and promoting for Renewable Energy Sources (RES) and reducing the environmental impacts of traditional centralized generation. This paper proposes multiple environment dispatch problem solution in micro-grids using Ant Colony Optimization (ACO) technique to solve the generation dispatch problem. A combined cost optimization scheme is investigated to minimize both operational cost and emission levels while satisfying the micro-grid's load demand. Furthermore, the proposed multiple environment dispatch problem solution is used to evaluate promoting RES implementation in micro-grids despite of their high capital cost using the combined economic emission dispatch problem. The proposed multiple environment dispatch solution was implemented using MatLab and tested on two case studies with and without RES-Wind Turbine-Solar (WT-PV). The obtained results from the proposed technique are compared with those calculated using other Techniques; Gradient to evaluate the proposed method. The outcomes are evaluated and discussed. Finally, conclusions are reported.