Copper Crystal Structures in Plated Microvias. Their Recrystallisation and a Means to Identify Joints at Risk of Premature Failure

T. Bernhard, R. Massey, K. Klaeden, S. Zarwell, S. Kempa, E. Steinhaeuser, S. Dieter, F. Brüning
{"title":"Copper Crystal Structures in Plated Microvias. Their Recrystallisation and a Means to Identify Joints at Risk of Premature Failure","authors":"T. Bernhard, R. Massey, K. Klaeden, S. Zarwell, S. Kempa, E. Steinhaeuser, S. Dieter, F. Brüning","doi":"10.4071/1085-8024-2021.1.000292","DOIUrl":null,"url":null,"abstract":"\n Plated microvias are widely used within todays PCB industry as a means of achieving the high-density designs that are required in modern mobile devices, however, there has been growing concern regarding their long term reliability performance when stacked directly on top of each other.\n Blind microvias (BMV) have a potentially complex metallurgical structure, with several interfaces located around the target pad - electroless Copper - electrolytic Copper joint. While field experience as shown that there are typically two major types of crystal structures formed across the BMV base, there has been little reported work investigating how or why such structures develop. In this paper, we review these two commonly observed microstructures within filled BMVs and offer proposals on how such structures are created. We subsequently describe a novel means to indicate if the microstructure of a BMV is likely to have a tendency for an early onset of failure.","PeriodicalId":14363,"journal":{"name":"International Symposium on Microelectronics","volume":"107 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Microelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/1085-8024-2021.1.000292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Plated microvias are widely used within todays PCB industry as a means of achieving the high-density designs that are required in modern mobile devices, however, there has been growing concern regarding their long term reliability performance when stacked directly on top of each other. Blind microvias (BMV) have a potentially complex metallurgical structure, with several interfaces located around the target pad - electroless Copper - electrolytic Copper joint. While field experience as shown that there are typically two major types of crystal structures formed across the BMV base, there has been little reported work investigating how or why such structures develop. In this paper, we review these two commonly observed microstructures within filled BMVs and offer proposals on how such structures are created. We subsequently describe a novel means to indicate if the microstructure of a BMV is likely to have a tendency for an early onset of failure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
镀微孔中的铜晶体结构。它们的再结晶和一种识别关节过早失效风险的方法
电镀微过孔作为实现现代移动设备所需的高密度设计的一种手段,在当今的PCB行业中被广泛使用,然而,当它们直接堆叠在彼此的上面时,人们越来越关注它们的长期可靠性性能。盲微孔(BMV)具有潜在的复杂的冶金结构,在靶焊盘-化学铜-电解铜接头周围分布着多个界面。虽然现场经验表明,在BMV基底上通常形成两种主要的晶体结构,但很少有研究这种结构如何或为什么形成的报道。在本文中,我们回顾了这两种常见的微观结构在填充bmv,并提出了如何创建这样的结构的建议。我们随后描述了一种新的方法来表明BMV的微观结构是否可能有早期失效的倾向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced Packaging Technology for Novel 1-dimensional and 2-dimensional VCSEL Arrays The Pivotal Role of Uniformity of Electrolytic Deposition Processes to Improve the Reliability of Advanced Packaging Enhancing the Paste Release on 55μm pads with Water-Soluble Type 7 SAC305 Solder Paste for High Density SIP Application Coronavirus, chip boom, and supply shortage: The new normal for global semiconductor manufacturing Lithography Solutions for Submicron Panel-Level Packaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1