Group Decision Support System Using SMART-COPELAND SCORE Model In Choosing The Best Alternative Pair

Devin Waas, Made Dona Wahyu Arsitana, I. P. H. Permana, I. K. Wiratama, I. Sudipa
{"title":"Group Decision Support System Using SMART-COPELAND SCORE Model In Choosing The Best Alternative Pair","authors":"Devin Waas, Made Dona Wahyu Arsitana, I. P. H. Permana, I. K. Wiratama, I. Sudipa","doi":"10.31315/telematika.v19i1.7181","DOIUrl":null,"url":null,"abstract":"Purpose: Adjust the Group Decision Support System (GDSS) model in completing case studies of selecting the best alternative candidate pairs for the OSIS core board with many decision-makers and problems in the differences in the preferences of decision-makers as well as modeling in decision making with multi-criteria and multi-attributes and combining preferences decision-makers to choose the best alternative partner candidate.Design/methodology/approach: The Group Decision Support System (GDSS) model combines the SMART method for modeling multi-criteria and multi-attribute assessments and the Copeland Score model for aggregating the judgments of five decision-makers against the selected pair of OSIS core board candidates using a voting mechanism.Findings/result: The comparison test for the manual calculation of the SMART- Copeland Score Model method with the results of the system calculation is the same. From the ten alternative data in the first stage of the test through the SMART method calculation, it then passes into four alternatives divided into two alternative candidate pairs, namely alternative candidate pairs (A1, A3) and alternative candidate pairs (A2, A4). The second stage test uses calculations Copeland Score voting, which produces the best alternative candidate pair, namely alternative (A1, A3) with a final point score = 4.Originality/value/state of the art: Based on a review of previous research, this study uses line-up criteria, written tests, and interview tests with the SMART method to calculate alternative scores on each criteria, and the Copeland Score model to aggregate decision makers' preferences to produce the best alternative candidate pairs. In calculating the final value of the alternative ranking.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31315/telematika.v19i1.7181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Purpose: Adjust the Group Decision Support System (GDSS) model in completing case studies of selecting the best alternative candidate pairs for the OSIS core board with many decision-makers and problems in the differences in the preferences of decision-makers as well as modeling in decision making with multi-criteria and multi-attributes and combining preferences decision-makers to choose the best alternative partner candidate.Design/methodology/approach: The Group Decision Support System (GDSS) model combines the SMART method for modeling multi-criteria and multi-attribute assessments and the Copeland Score model for aggregating the judgments of five decision-makers against the selected pair of OSIS core board candidates using a voting mechanism.Findings/result: The comparison test for the manual calculation of the SMART- Copeland Score Model method with the results of the system calculation is the same. From the ten alternative data in the first stage of the test through the SMART method calculation, it then passes into four alternatives divided into two alternative candidate pairs, namely alternative candidate pairs (A1, A3) and alternative candidate pairs (A2, A4). The second stage test uses calculations Copeland Score voting, which produces the best alternative candidate pair, namely alternative (A1, A3) with a final point score = 4.Originality/value/state of the art: Based on a review of previous research, this study uses line-up criteria, written tests, and interview tests with the SMART method to calculate alternative scores on each criteria, and the Copeland Score model to aggregate decision makers' preferences to produce the best alternative candidate pairs. In calculating the final value of the alternative ranking.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于SMART-COPELAND SCORE模型的群体决策支持系统中最佳选择对
目的:调整群体决策支持系统(Group Decision Support System, GDSS)模型,完成多决策者的OSIS核心板最佳备选人选对选择的案例研究和决策者偏好差异问题,以及多标准多属性决策建模,结合偏好决策者选择最佳备选搭档人选。设计/方法/方法:群体决策支持系统(GDSS)模型结合了SMART方法,用于建模多标准和多属性评估,以及Copeland评分模型,用于通过投票机制汇总五个决策者对选定的sis核心董事会候选人的判断。发现/结果:人工计算SMART- Copeland评分模型方法与系统计算结果的对比检验相同。从第一阶段测试的10个备选数据通过SMART方法计算,然后传递到4个备选数据,分为两个备选备选数据对,即备选备选数据对(A1, A3)和备选备选数据对(A2, A4)。第二阶段测试使用计算Copeland得分投票,产生最佳备选候选人对,即最终得分= 4的备选(A1, A3)。原创性/价值/技术水平:在回顾以往研究的基础上,本研究使用阵容标准、笔试和面试测试,采用SMART方法计算每个标准的备选分数,并使用Copeland评分模型汇总决策者的偏好,以产生最佳备选候选人对。在计算备选排名的最终值时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
7
审稿时长
24 weeks
期刊最新文献
Identification of Social Media Posts Containing Self-reported COVID-19 Symptoms using Triple Word Embeddings and Long Short-Term Memory Deep Learning for Histopathological Image Analysis: A Convolutional Neural Network Approach to Colon Cancer Classification Comparative Analysis of Classification Methods in Sentiment Analysis: The Impact of Feature Selection and Ensemble Techniques Optimization Optimizing Clustering of Indonesian Text Data Using Particle Swarm Optimization Algorithm: A Case Study of the Quran Translation Monitoring Development Board based on InfluxDB and Grafana
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1