Prediction and Analysis of Corporate Bond Risk Based on Data Mining

柯男 葛
{"title":"Prediction and Analysis of Corporate Bond Risk Based on Data Mining","authors":"柯男 葛","doi":"10.12677/etw.2022.121001","DOIUrl":null,"url":null,"abstract":"The advent of the era of big data and the development of the Internet and computer technology have brought new tools for risk early warning to the bond market. From the perspective of micro risk information of the company’s internal operation, this paper uses data mining technology to find out the key factors affecting the maturity of corporate bonds, and establishes a method to predict bond default. Using the extreme gradient boosting algorithm, it is found that the main influencing factors of whether the bond defaults are the year-on-year growth rate of operating revenue and asset liability ratio in this paper. And then we establish a binary logistic regression model of the bond. The binary logistic regression model can predict whether the bond defaults.","PeriodicalId":71617,"journal":{"name":"财富涌现与流转","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"财富涌现与流转","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.12677/etw.2022.121001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of the era of big data and the development of the Internet and computer technology have brought new tools for risk early warning to the bond market. From the perspective of micro risk information of the company’s internal operation, this paper uses data mining technology to find out the key factors affecting the maturity of corporate bonds, and establishes a method to predict bond default. Using the extreme gradient boosting algorithm, it is found that the main influencing factors of whether the bond defaults are the year-on-year growth rate of operating revenue and asset liability ratio in this paper. And then we establish a binary logistic regression model of the bond. The binary logistic regression model can predict whether the bond defaults.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数据挖掘的公司债券风险预测与分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Yilusuixing—Current Status and Future Development of Recreational Vehicle (RV) Rental Platforms Research on the Impact of Geopolitical Risks on Commodity Futures Prices Prediction and Analysis of Corporate Bond Risk Based on Data Mining Research on the Development of Cross-Border E-Commerce in Heilongjiang Province under the Background of “One Belt and One Road” Research on Cross-Border E-Commerce Logistics in Shandong Province
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1