{"title":"Manifold lifting: scaling Markov chain Monte Carlo to the vanishing noise regime","authors":"K. Au, Matthew M. Graham, Alexandre Hoang Thiery","doi":"10.1093/jrsssb/qkad023","DOIUrl":null,"url":null,"abstract":"\n Standard Markov chain Monte Carlo methods struggle to explore distributions that concentrate in the neighbourhood of low-dimensional submanifolds. This pathology naturally occurs in Bayesian inference settings when there is a high signal-to-noise ratio in the observational data but the model is inherently over-parametrised or nonidentifiable. In this paper, we propose a strategy that transforms the original sampling problem into the task of exploring a distribution supported on a manifold embedded in a higher-dimensional space; in contrast to the original posterior this lifted distribution remains diffuse in the limit of vanishing observation noise. We employ a constrained Hamiltonian Monte Carlo method, which exploits the geometry of this lifted distribution, to perform efficient approximate inference. We demonstrate in numerical experiments that, contrarily to competing approaches, the sampling efficiency of our proposed methodology does not degenerate as the target distribution to be explored concentrates near low-dimensional submanifolds. Python code reproducing the results is available at https://doi.org/10.5281/zenodo.6551654.","PeriodicalId":49982,"journal":{"name":"Journal of the Royal Statistical Society Series B-Statistical Methodology","volume":"33 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series B-Statistical Methodology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssb/qkad023","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
Standard Markov chain Monte Carlo methods struggle to explore distributions that concentrate in the neighbourhood of low-dimensional submanifolds. This pathology naturally occurs in Bayesian inference settings when there is a high signal-to-noise ratio in the observational data but the model is inherently over-parametrised or nonidentifiable. In this paper, we propose a strategy that transforms the original sampling problem into the task of exploring a distribution supported on a manifold embedded in a higher-dimensional space; in contrast to the original posterior this lifted distribution remains diffuse in the limit of vanishing observation noise. We employ a constrained Hamiltonian Monte Carlo method, which exploits the geometry of this lifted distribution, to perform efficient approximate inference. We demonstrate in numerical experiments that, contrarily to competing approaches, the sampling efficiency of our proposed methodology does not degenerate as the target distribution to be explored concentrates near low-dimensional submanifolds. Python code reproducing the results is available at https://doi.org/10.5281/zenodo.6551654.
期刊介绍:
Series B (Statistical Methodology) aims to publish high quality papers on the methodological aspects of statistics and data science more broadly. The objective of papers should be to contribute to the understanding of statistical methodology and/or to develop and improve statistical methods; any mathematical theory should be directed towards these aims. The kinds of contribution considered include descriptions of new methods of collecting or analysing data, with the underlying theory, an indication of the scope of application and preferably a real example. Also considered are comparisons, critical evaluations and new applications of existing methods, contributions to probability theory which have a clear practical bearing (including the formulation and analysis of stochastic models), statistical computation or simulation where original methodology is involved and original contributions to the foundations of statistical science. Reviews of methodological techniques are also considered. A paper, even if correct and well presented, is likely to be rejected if it only presents straightforward special cases of previously published work, if it is of mathematical interest only, if it is too long in relation to the importance of the new material that it contains or if it is dominated by computations or simulations of a routine nature.