Relation between Sub-grain Size and Dislocation Density During Steady-State Dislocation Creep of Polycrystalline Cubic Metals

M. Tamura
{"title":"Relation between Sub-grain Size and Dislocation Density During Steady-State Dislocation Creep of Polycrystalline Cubic Metals","authors":"M. Tamura","doi":"10.5539/JMSR.V7N4P26","DOIUrl":null,"url":null,"abstract":"The sub-grain size, d, during steady-state dislocation creep of polycrystalline metals is theoretically formulated to be inversely proportional to the dislocation density, ρ, which is defined as the number of dislocations swept out of a sub-grain divided by the cross-sectional area of the sub-grain. This dislocation density differs from the typically observed dislocation density inside a sub-grain after unloading, ρ_ob. In the current work, the ρ_ob values inside sub-grains in steadily crept specimens of Al, Cu, Fe, Fe–Mo alloy, austenitic stainless steel, and high-Cr martensitic steel reported in the literature were used to evaluate the relation ρ_ob=ηρ. It was confirmed that η≈1 for pure metals (regardless of the type of metal) crept at high temperatures and low stresses or for long durations and η>1 for Mo-containing alloys and martensitic steel crept at low temperatures and/or high stresses. Moreover, it is suggested that the condition η>1 corresponds to a state of excess immobile dislocations inside the sub-grain. The theoretical relation d_ob (≈d)∝η∙〖ρ_ob〗^(-1), where d_ob is the observed sub-grain size, essentially differs from the well-known empirical relation d_ob∝〖ρ_ob〗^(-0.5).","PeriodicalId":16111,"journal":{"name":"Journal of Materials Science Research","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/JMSR.V7N4P26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The sub-grain size, d, during steady-state dislocation creep of polycrystalline metals is theoretically formulated to be inversely proportional to the dislocation density, ρ, which is defined as the number of dislocations swept out of a sub-grain divided by the cross-sectional area of the sub-grain. This dislocation density differs from the typically observed dislocation density inside a sub-grain after unloading, ρ_ob. In the current work, the ρ_ob values inside sub-grains in steadily crept specimens of Al, Cu, Fe, Fe–Mo alloy, austenitic stainless steel, and high-Cr martensitic steel reported in the literature were used to evaluate the relation ρ_ob=ηρ. It was confirmed that η≈1 for pure metals (regardless of the type of metal) crept at high temperatures and low stresses or for long durations and η>1 for Mo-containing alloys and martensitic steel crept at low temperatures and/or high stresses. Moreover, it is suggested that the condition η>1 corresponds to a state of excess immobile dislocations inside the sub-grain. The theoretical relation d_ob (≈d)∝η∙〖ρ_ob〗^(-1), where d_ob is the observed sub-grain size, essentially differs from the well-known empirical relation d_ob∝〖ρ_ob〗^(-0.5).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多晶立方金属稳态位错蠕变过程中亚晶粒尺寸与位错密度的关系
在多晶金属的稳态位错蠕变过程中,亚晶粒尺寸d在理论上与位错密度ρ成反比,其定义为从亚晶粒中扫出的位错数除以亚晶粒的横截面积。这种位错密度不同于卸载后亚晶内部典型观察到的位错密度ρ_ob。本文采用文献报道的Al、Cu、Fe、Fe - mo合金、奥氏体不锈钢和高cr马氏体钢稳定蠕变试样亚晶内的ρ_ob值来评价ρ_ob=ηρ的关系。结果表明,纯金属(无论何种金属)在高温和低应力下或长时间蠕变,η≈1,含钼合金和马氏体钢在低温和高应力下蠕变,η>1。结果表明,当η>1时,亚晶内部存在过多的不动位错。理论关系d_ob(≈d)∝η∙〖ρ_ob〗^(-1)与众所周知的经验关系d_ob(≈d)∝〖ρ_ob〗^(-0.5)有本质区别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural and Electronic Impact on Various Substrates of TiO2 Thin Film Using Sol-Gel Spin Coating Method On the Onset of Plasticity: Determination of Strength and Ductility Investigation to enhanced Physical and Mechanical Properties of Road Pavement in Asphalt Incorporating Low-Density Waste Plastic Bags Reviewer acknowledgements for Journal of Materials Science Research, Vol. 12, No. 2 Electron Theory of Metals - Answers to Unsolved Problems/Questions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1