Physicochemical, Antibacterial, and Cytotoxic Properties of Composite Materials Based on Biodegradable Poly (Lactic-Co-Glycolic Acid) Functionalized with Zno Nanoparticles

D. Burmistrov, D. Serov, D. Grigorieva, A. Simakin
{"title":"Physicochemical, Antibacterial, and Cytotoxic Properties of Composite Materials Based on Biodegradable Poly (Lactic-Co-Glycolic Acid) Functionalized with Zno Nanoparticles","authors":"D. Burmistrov, D. Serov, D. Grigorieva, A. Simakin","doi":"10.1051/bioconf/20235702005","DOIUrl":null,"url":null,"abstract":"One of the tasks of modern nanotechnology is the creation of new materials with a wide range of applications and good antibacterial activity. In this work, we developed a new composite material based on poly(lactic-co-glycolic acid) and zinc oxide nanoparticles. The resulting material had a smooth surface without microdefects. The polymer matrix did not affect the generation of reactive oxygen species, 8-oxoguanine, and long-lived protein forms. The addition of ZnO-NPs enhanced the generation of these compounds. The addition of ZnO-NPs to the polymer at a concentration of 0.001-0.1 wt% made it possible to achieve a significant bacteriostatic effect, while not affecting the growth, division, and viability of eukaryotic cells. The resulting composite material is of great interest for biomedical use and the food industry due to controlled biodegradability and antibacterial activity.","PeriodicalId":8805,"journal":{"name":"BIO Web of Conferences","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIO Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/bioconf/20235702005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the tasks of modern nanotechnology is the creation of new materials with a wide range of applications and good antibacterial activity. In this work, we developed a new composite material based on poly(lactic-co-glycolic acid) and zinc oxide nanoparticles. The resulting material had a smooth surface without microdefects. The polymer matrix did not affect the generation of reactive oxygen species, 8-oxoguanine, and long-lived protein forms. The addition of ZnO-NPs enhanced the generation of these compounds. The addition of ZnO-NPs to the polymer at a concentration of 0.001-0.1 wt% made it possible to achieve a significant bacteriostatic effect, while not affecting the growth, division, and viability of eukaryotic cells. The resulting composite material is of great interest for biomedical use and the food industry due to controlled biodegradability and antibacterial activity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米氧化锌功能化可生物降解聚乳酸-羟基乙酸复合材料的理化、抗菌和细胞毒性研究
现代纳米技术的任务之一是创造具有广泛应用和良好抗菌活性的新材料。在这项工作中,我们开发了一种新的基于聚乳酸-羟基乙酸和氧化锌纳米颗粒的复合材料。所得材料表面光滑,无微缺陷。聚合物基质不影响活性氧、8-氧鸟嘌呤和长寿命蛋白质形式的产生。ZnO-NPs的加入促进了这些化合物的生成。在聚合物中添加浓度为0.001-0.1 wt%的ZnO-NPs,可以达到显著的抑菌效果,同时不影响真核细胞的生长、分裂和活力。由此产生的复合材料由于具有可控的生物降解性和抗菌活性,在生物医学和食品工业中具有很大的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The behaviour of grapevine growers in the decision-making of using Plant Protection Products (PPP) from Palmela region Sustainable Ecology of the Metropolis and a Local Green Frame Involving Beneficial Insects on the Example of St. Petersburg The Low Carbon Trend from a Sustainability Perspective: Limiting Greenhouse Gas Emissions Theoretical foundations of students’ preparation for professional activity in higher educational institutions Bioprotection as a tool to produce natural wine: Impact on physicochemical and sensory analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1