An Efficient Modelling Approach for Predicting Residual Stress in Power-Beam Welds

G. Horne, Danny L. Thomas, Andrew P. S. Collett, Andrew Clay, M. Cott, A. Moffat
{"title":"An Efficient Modelling Approach for Predicting Residual Stress in Power-Beam Welds","authors":"G. Horne, Danny L. Thomas, Andrew P. S. Collett, Andrew Clay, M. Cott, A. Moffat","doi":"10.1115/pvp2019-93528","DOIUrl":null,"url":null,"abstract":"\n The prediction of welding residual stress in components is often an important input to structural integrity assessments. An efficient modelling approach was developed for predicting residual stress in power-beam welds, including validation against residual stress measurements. Specifically, sequentially coupled thermo-mechanical finite element analysis was conducted using a simplified heat source that was tuned to the observed fusion zone from a weld macrograph and thermocouple data for a series of electron beam welds in 316L austenitic stainless steel with a variety of geometries. The predicted residual stresses were compared with contour method and neutron diffraction residual stress measurements.","PeriodicalId":23651,"journal":{"name":"Volume 6B: Materials and Fabrication","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6B: Materials and Fabrication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2019-93528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The prediction of welding residual stress in components is often an important input to structural integrity assessments. An efficient modelling approach was developed for predicting residual stress in power-beam welds, including validation against residual stress measurements. Specifically, sequentially coupled thermo-mechanical finite element analysis was conducted using a simplified heat source that was tuned to the observed fusion zone from a weld macrograph and thermocouple data for a series of electron beam welds in 316L austenitic stainless steel with a variety of geometries. The predicted residual stresses were compared with contour method and neutron diffraction residual stress measurements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种预测功率梁焊缝残余应力的有效建模方法
构件焊接残余应力的预测通常是结构完整性评估的重要输入。开发了一种有效的建模方法,用于预测功率梁焊缝中的残余应力,包括对残余应力测量的验证。具体而言,采用简化热源对316L奥氏体不锈钢各种几何形状的电子束焊缝进行了顺序耦合热-机械有限元分析,该热源根据焊缝宏观图和热电偶数据调整到观察到的熔合区。将预测的残余应力与轮廓法和中子衍射残余应力测量结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating the Resistance of Austenitic Stainless Steel Welds to Hydrogen Embrittlement Improvement of Low-Temperature Toughness in Weld Metal Made of 9Cr-1Mo-V Steel by GTAW Method Load Normalization Method Accounting for Elastic and Elastic-Plastic Crack Growth Crack Growth Rate Testing and Large Plate Demonstration Under Chloride-Induced Stress Corrosion Cracking Conditions in Stainless Steel Canisters for Storage of Spent Nuclear Fuel An Efficient Modelling Approach for Predicting Residual Stress in Power-Beam Welds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1