Micromanipulation based on AFM: Probe tip selection

Shaorong Du, Yangmin Li
{"title":"Micromanipulation based on AFM: Probe tip selection","authors":"Shaorong Du, Yangmin Li","doi":"10.1109/NANO.2007.4601242","DOIUrl":null,"url":null,"abstract":"Micromanipulation based on AFM (atomic force microscope) has become popular in recent years. Since the AFM probe tip can have several shapes, how to select tip shape is discussed for micromanipulation in this paper. Based on the Hamaker hypotheses and the Lennard-Jones potential, interactions between probe and substrate surface are analyzed for three typical shape probe tips, namely, quadrilateral pyramid, cone, and paraboloid. Simulations are presented, and conclusion is obtained: a quadrilateral pyramid probe tip with small inclination between edge and axis is the best choice for micromanipulation based on AFM.","PeriodicalId":6415,"journal":{"name":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","volume":"54 1","pages":"506-510"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2007.4601242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Micromanipulation based on AFM (atomic force microscope) has become popular in recent years. Since the AFM probe tip can have several shapes, how to select tip shape is discussed for micromanipulation in this paper. Based on the Hamaker hypotheses and the Lennard-Jones potential, interactions between probe and substrate surface are analyzed for three typical shape probe tips, namely, quadrilateral pyramid, cone, and paraboloid. Simulations are presented, and conclusion is obtained: a quadrilateral pyramid probe tip with small inclination between edge and axis is the best choice for micromanipulation based on AFM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于AFM的显微操作:探针尖端选择
基于原子力显微镜(AFM)的显微操作近年来得到了广泛的应用。由于AFM探针的尖端可以有多种形状,本文讨论了如何选择尖端形状进行显微操作。基于Hamaker假设和Lennard-Jones势,分析了四棱锥型、锥型和抛物面型三种典型形状探针尖端与基底表面的相互作用。仿真结果表明:边轴倾角小的四边形金字塔探针尖是AFM显微操作的最佳选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Schrödinger Equation Monte Carlo-3D for simulation of nanoscale MOSFETs Young's Modulus of High Aspect Ratio Si3N4 Nano-thickness Membrane Quantum well nanomechanical actuators with atomic vertical resolution Study of nanopattern forming with chemical coatings for silicon-based stamp in nanoimprint process Surface energy induced patterning of polymer nanostructures for cancer diagnosis and therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1