SA-SVM incremental algorithm for GIS PD pattern recognition

Dibo Wang, Ju Tang, R. Zhuo, Jun-yi Lin, Jian-rong Wu, Xiao-xing Zhang
{"title":"SA-SVM incremental algorithm for GIS PD pattern recognition","authors":"Dibo Wang, Ju Tang, R. Zhuo, Jun-yi Lin, Jian-rong Wu, Xiao-xing Zhang","doi":"10.1109/ICHVE.2012.6357131","DOIUrl":null,"url":null,"abstract":"With changes in insulated defects, the environment, and so on, new partial discharge (PD) data are highly different from the original samples. It leads to a decrease in on-line recognition rate. Using ultra-high frequency (UHF) cumulative energy and its corresponding apparent discharge as inputs, a support vector machine (SVM) incremental method based on simulated annealing (SA) is constructed. Examples show that the new method speeds up the data update rate and improves the adaptability of the classifier.","PeriodicalId":6375,"journal":{"name":"2012 International Conference on High Voltage Engineering and Application","volume":"4 1","pages":"388-391"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on High Voltage Engineering and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHVE.2012.6357131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

With changes in insulated defects, the environment, and so on, new partial discharge (PD) data are highly different from the original samples. It leads to a decrease in on-line recognition rate. Using ultra-high frequency (UHF) cumulative energy and its corresponding apparent discharge as inputs, a support vector machine (SVM) incremental method based on simulated annealing (SA) is constructed. Examples show that the new method speeds up the data update rate and improves the adaptability of the classifier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GIS PD模式识别的SA-SVM增量算法
随着绝缘缺陷、环境等的变化,新的局部放电(PD)数据与原始样品有很大的不同。导致在线识别率下降。以超高频(UHF)累积能量及其相应的视放电为输入,构造了一种基于模拟退火(SA)的支持向量机(SVM)增量方法。实例表明,该方法加快了数据更新速度,提高了分类器的自适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of SiO2 particles on surface charge of epoxy nanocomposites The properties of space charge in oil-paper insulation during electrical-thermal aging A study of validation of condition monitoring method of NPPs cable through volume electrical resistivity Ice adhesion on the surface of PDMS/nano-silica hybrid super-hydrophobic coating Sensitivity study on streaming electrification of transformer liquids by using rotating disc method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1