A Data Mining Application in Customer Churn Prediction

Mustafa Büyükkeçeci̇, M. C. Okur
{"title":"A Data Mining Application in Customer Churn Prediction","authors":"Mustafa Büyükkeçeci̇, M. C. Okur","doi":"10.21205/deufmd.2022247218","DOIUrl":null,"url":null,"abstract":"Müşteri memnuniyeti ve sadakati uygun fiyat, ürün çeşitliliği, hızlı tedarik ve sevkiyat, ürün kalitesi, satış öncesi ve sonrası hizmetler ve müşteri davranışlarının analiz edilmesi ile sağlanır. Müşteri davranışlarını analiz eden işletmeler hem mevcut müşterilerini koruyabilir hem de yenilerini kazanabilir. Bu çalışmanın amacı işletmeleri terk etme ihtimali olan müşterileri tahmin edebilen gözetimli modeller üretmektir. Bu amaçla toplamda 21 sınıflandırma yöntemi ve telekomünikasyon, bankacılık ve e–ticaret sektörlerine ait veri kümeleri kullanılarak deney çalışmaları gerçekleştirilmiştir. Ayrıca işletmelerin harcama alışkanlıklarına göre müşterileri sıralamak ve sınıflandırmak için kullandıkları basit ama etkili bir pazarlama analiz aracı olan RFM (Recency, Frequency, Monetary Value) bölümlemesi, Ki-Kare Testi ile birlikte boyut indirgeme metodu olarak kullanılmıştır. Böylelikle optimal eleman sayısına sahip öznitelik altkümelerinin elde edilmesi ve öznitelik seçim öncesi ve sonrası model performanslarının kıyaslanması hedeflenmiştir.","PeriodicalId":23481,"journal":{"name":"Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21205/deufmd.2022247218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Müşteri memnuniyeti ve sadakati uygun fiyat, ürün çeşitliliği, hızlı tedarik ve sevkiyat, ürün kalitesi, satış öncesi ve sonrası hizmetler ve müşteri davranışlarının analiz edilmesi ile sağlanır. Müşteri davranışlarını analiz eden işletmeler hem mevcut müşterilerini koruyabilir hem de yenilerini kazanabilir. Bu çalışmanın amacı işletmeleri terk etme ihtimali olan müşterileri tahmin edebilen gözetimli modeller üretmektir. Bu amaçla toplamda 21 sınıflandırma yöntemi ve telekomünikasyon, bankacılık ve e–ticaret sektörlerine ait veri kümeleri kullanılarak deney çalışmaları gerçekleştirilmiştir. Ayrıca işletmelerin harcama alışkanlıklarına göre müşterileri sıralamak ve sınıflandırmak için kullandıkları basit ama etkili bir pazarlama analiz aracı olan RFM (Recency, Frequency, Monetary Value) bölümlemesi, Ki-Kare Testi ile birlikte boyut indirgeme metodu olarak kullanılmıştır. Böylelikle optimal eleman sayısına sahip öznitelik altkümelerinin elde edilmesi ve öznitelik seçim öncesi ve sonrası model performanslarının kıyaslanması hedeflenmiştir.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据挖掘在客户流失预测中的应用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ticari Bir Pistonlu Motorda JP8-Elementel Bor Katkısının Performansa Etkisinin Deneysel İncelenmesi Behavior of reinforced concrete beams under different angled cold joints at shear zone Pim Disk Aşınma Test Cihazı Tasarımı ve İmalatı Hem İşletmeci Hem de Kullanıcı Açısından Kent İçi Otobüs Hatlarının Performanslarının Değerlendirilmesi Thermodynamic Analysis of Liquid Steel Production in an ElectricArc Furnace
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1