Understanding photoacid generator distribution at the nanoscale using massive cluster secondary ion mass spectrometry

IF 1.5 2区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Micro/Nanolithography, MEMS, and MOEMS Pub Date : 2019-09-13 DOI:10.1117/1.JMM.18.3.033502
Xisen Hou, Mingqi Li, M. Eller, S. Verkhoturov, E. Schweikert, P. Trefonas
{"title":"Understanding photoacid generator distribution at the nanoscale using massive cluster secondary ion mass spectrometry","authors":"Xisen Hou, Mingqi Li, M. Eller, S. Verkhoturov, E. Schweikert, P. Trefonas","doi":"10.1117/1.JMM.18.3.033502","DOIUrl":null,"url":null,"abstract":"Abstract. Background: The homogeneity of photoacid generator (PAG) is a critical factor influencing the resolving capability and the sidewall roughness of a photoresist, yet fundamental understanding of the PAG homogeneity lacks at the nanoscale. Aim: We present a methodology, massive cluster secondary ion mass spectrometry (MC-SIMS), to determine PAG homogeneity on a 10- to 15-nm scale at the photoresist film surface. Approach: MC-SIMS bombards the sample with a sequence of massive Au400  +  4 nanoprojectiles, each separated in time and space, collecting and mass analyzing the coemitted secondary ions from each impact. Each sample is analyzed with one million individual projectile impacts. Analysis of coemission of these independent more than one million mass spectra allows for identification of colocalized molecules within nanodomains ∼10- to 15-nm diameter and ∼10  nm in depth from the film surface, therefore revealing spatial molecular distributions at the nanoscale. Results: About 85% to 95% of the measurements showed PAG–PAG coemission and over 90% showed polymer–PAG coemission. Ion-exchanging additive increases polymer–PAG coemission. Conclusions: The majority of PAG molecules exist as small aggregates that are <10  nm in size and such aggregates are highly homogeneously distributed within the polymer matrix. The size of the PAG aggregates can be manipulated by additives through an ion-exchange mechanism.","PeriodicalId":16522,"journal":{"name":"Journal of Micro/Nanolithography, MEMS, and MOEMS","volume":"1 1","pages":"033502 - 033502"},"PeriodicalIF":1.5000,"publicationDate":"2019-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro/Nanolithography, MEMS, and MOEMS","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JMM.18.3.033502","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Background: The homogeneity of photoacid generator (PAG) is a critical factor influencing the resolving capability and the sidewall roughness of a photoresist, yet fundamental understanding of the PAG homogeneity lacks at the nanoscale. Aim: We present a methodology, massive cluster secondary ion mass spectrometry (MC-SIMS), to determine PAG homogeneity on a 10- to 15-nm scale at the photoresist film surface. Approach: MC-SIMS bombards the sample with a sequence of massive Au400  +  4 nanoprojectiles, each separated in time and space, collecting and mass analyzing the coemitted secondary ions from each impact. Each sample is analyzed with one million individual projectile impacts. Analysis of coemission of these independent more than one million mass spectra allows for identification of colocalized molecules within nanodomains ∼10- to 15-nm diameter and ∼10  nm in depth from the film surface, therefore revealing spatial molecular distributions at the nanoscale. Results: About 85% to 95% of the measurements showed PAG–PAG coemission and over 90% showed polymer–PAG coemission. Ion-exchanging additive increases polymer–PAG coemission. Conclusions: The majority of PAG molecules exist as small aggregates that are <10  nm in size and such aggregates are highly homogeneously distributed within the polymer matrix. The size of the PAG aggregates can be manipulated by additives through an ion-exchange mechanism.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用大质量团簇二次离子质谱法了解光酸发生器在纳米尺度上的分布
摘要背景:光酸发生器(PAG)的均匀性是影响光刻胶分辨能力和侧壁粗糙度的关键因素,但在纳米尺度上对PAG的均匀性缺乏基本的了解。目的:我们提出了一种方法,大质量簇二次离子质谱法(MC-SIMS),以确定光刻胶膜表面10至15纳米尺度上PAG的均匀性。方法:MC-SIMS用一系列在时间和空间上分离的Au400 + 4纳米弹丸轰击样品,收集和质量分析每次撞击产生的共发射二次离子。每个样本都用一百万次单独的弹丸撞击来分析。对这些独立的超过100万个质谱的共发射分析允许在直径约10至15纳米和距膜表面深度约10纳米的纳米域内识别共定位分子,从而揭示纳米尺度上的空间分子分布。结果:85% ~ 95%的测量结果显示PAG-PAG共发射,90%以上的测量结果显示聚合物- pag共发射。离子交换添加剂增加聚合物- pag共发射。结论:大多数PAG分子以小于10nm的小聚集体存在,这种聚集体在聚合物基质中分布高度均匀。PAG聚集体的大小可以通过离子交换机制通过添加剂来控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
30.40%
发文量
0
审稿时长
6-12 weeks
期刊最新文献
Rayleigh or Abbe? Origin and naming of the resolution formula of microlithography JM3 is Gone, Long Live JM3! Direct comparison of line edge roughness measurements by SEM and a metrological tilting-atomic force microscopy for reference metrology Resolution enhancement with source-wavelength optimization according to illumination angle in optical lithography Particle and pattern discriminant freeze-cleaning method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1