Electrical characterization of gate stack charge traps in floating body gate-all-around field-effect-transistors

M. Nguyen, An Hoang-Thuy Nguyen, Jiyong Yim, Anh-Duy Nguyen, Mingyu Kim, Jeonghan Kim, Jong-hyun Beak, R. Choi
{"title":"Electrical characterization of gate stack charge traps in floating body gate-all-around field-effect-transistors","authors":"M. Nguyen, An Hoang-Thuy Nguyen, Jiyong Yim, Anh-Duy Nguyen, Mingyu Kim, Jeonghan Kim, Jong-hyun Beak, R. Choi","doi":"10.1116/6.0000906","DOIUrl":null,"url":null,"abstract":"Individual charge traps in the gate stack of gate-all-around field-effect-transistors have been identified from their random telegraph noise (RTN) characteristics in the time and frequency domains. The energy level and depth location of the corresponding charge traps were extracted from capture/emission time constant and corner frequency. The charge traps were determined to be the excited states of oxygen vacancies in the dielectric located 3 nm away from the interface. Both the time domain and frequency domain RTN measurements lead to an identical result.","PeriodicalId":17652,"journal":{"name":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0000906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Individual charge traps in the gate stack of gate-all-around field-effect-transistors have been identified from their random telegraph noise (RTN) characteristics in the time and frequency domains. The energy level and depth location of the corresponding charge traps were extracted from capture/emission time constant and corner frequency. The charge traps were determined to be the excited states of oxygen vacancies in the dielectric located 3 nm away from the interface. Both the time domain and frequency domain RTN measurements lead to an identical result.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
浮体栅极全能场效应晶体管栅极堆叠电荷阱的电学特性
从随机电报噪声(RTN)的时域和频域特性出发,对栅极全能场效应晶体管栅极叠加中的单个电荷陷阱进行了识别。从捕获/发射时间常数和角频率提取相应电荷陷阱的能级和深度位置。电荷阱被确定为距离界面3nm处介电介质中氧空位的激发态。时域和频域RTN测量结果相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tunable and scalable fabrication of plasmonic dimer arrays with sub-10 nm nanogaps by area-selective atomic layer deposition Characterization and optimization of bonding and interconnect technology for 3D stacking thin dies Ultradeep microaxicons in lithium niobate by focused Xe ion beam milling Self-powered ultraviolet photodiode based on lateral polarity structure GaN films Electrical conductivity across the alumina support layer following carbon nanotube growth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1