Zhuhuan Xu;Xin Guan;Haiyang Jiang;Yongnan Liu;Zhaogong Zhang;Hongyang Chen;Zhu Han
{"title":"Carbon Neutrality Computational Cost Optimization for Economic Dispatch With Carbon Capture Power Plants in Smart Grid","authors":"Zhuhuan Xu;Xin Guan;Haiyang Jiang;Yongnan Liu;Zhaogong Zhang;Hongyang Chen;Zhu Han","doi":"10.1109/TSUSC.2023.3284827","DOIUrl":null,"url":null,"abstract":"To achieve carbon neutrality, reducing carbon emissions is crucial in dispatching problems in smart grid. Though renewable energy such as wind power has low carbon emissions, it suffers from random generation, which makes the thermal power necessary for a stable supply power system. To reduce carbon emissions, the thermal power plants are transformed into carbon capture power plants, which brings new challenges to economic dispatch algorithms. Besides, there are usually many constraints to keep the security operation of power systems, which incurs a large problem scale and high computational cost. Most existing methods either do not consider reducing carbon emissions, or suffer from high computational costs. In this article, a framework for the carbon capture plants with wind power to reduce both running costs and carbon emissions is designed to support carbon neutrality. To reduce computational cost, initial-training and fine-tuning are used. A deep neural network is employed to describe the relationship between users’ load and the constraints, which provides guides for finding the active constraints. Therefore, the problem scale can be significantly decreased, making the optimal dispatching strategy obtained quickly. The experimental results on real-world data show that the proposed framework can obtain the optimal strategy efficiently.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 3","pages":"354-370"},"PeriodicalIF":3.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10148794/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
To achieve carbon neutrality, reducing carbon emissions is crucial in dispatching problems in smart grid. Though renewable energy such as wind power has low carbon emissions, it suffers from random generation, which makes the thermal power necessary for a stable supply power system. To reduce carbon emissions, the thermal power plants are transformed into carbon capture power plants, which brings new challenges to economic dispatch algorithms. Besides, there are usually many constraints to keep the security operation of power systems, which incurs a large problem scale and high computational cost. Most existing methods either do not consider reducing carbon emissions, or suffer from high computational costs. In this article, a framework for the carbon capture plants with wind power to reduce both running costs and carbon emissions is designed to support carbon neutrality. To reduce computational cost, initial-training and fine-tuning are used. A deep neural network is employed to describe the relationship between users’ load and the constraints, which provides guides for finding the active constraints. Therefore, the problem scale can be significantly decreased, making the optimal dispatching strategy obtained quickly. The experimental results on real-world data show that the proposed framework can obtain the optimal strategy efficiently.