The comparison of automatic artifact removal methods with robust classification strategies in terms of EEG classification accuracy

P. Merinov, M. Belyaev, Egor Krivov
{"title":"The comparison of automatic artifact removal methods with robust classification strategies in terms of EEG classification accuracy","authors":"P. Merinov, M. Belyaev, Egor Krivov","doi":"10.1109/SIBIRCON.2015.7361887","DOIUrl":null,"url":null,"abstract":"One of the key objectives of brain-computer interface (BCI) design is to construct accurate electroencephalogram (EEG) based classifier. But out of laboratory all EEG signals are contaminated with artifacts, which hamper algorithmic processing and EEG analysis, i.e. classifier ought to get a prediction for noisy data. Real-time BCI system rely on relatively clean EEG signals. Therefore, the exclusion of artifacts is of special interest for BCI applications in everyday life. There are two main approaches to this objective: automatic EEG artifact rejection methods (subtract the noisy component) and robust classification methods (replace sensitive to outliers estimates with robust counterparts). The goal of this work is to quantitatively compare popular automatic EEG artifact rejection approaches with robust classification methods in terms of motor imagery (MI) classification paradigm.","PeriodicalId":6503,"journal":{"name":"2015 International Conference on Biomedical Engineering and Computational Technologies (SIBIRCON)","volume":"162 1","pages":"221-224"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Biomedical Engineering and Computational Technologies (SIBIRCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBIRCON.2015.7361887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

One of the key objectives of brain-computer interface (BCI) design is to construct accurate electroencephalogram (EEG) based classifier. But out of laboratory all EEG signals are contaminated with artifacts, which hamper algorithmic processing and EEG analysis, i.e. classifier ought to get a prediction for noisy data. Real-time BCI system rely on relatively clean EEG signals. Therefore, the exclusion of artifacts is of special interest for BCI applications in everyday life. There are two main approaches to this objective: automatic EEG artifact rejection methods (subtract the noisy component) and robust classification methods (replace sensitive to outliers estimates with robust counterparts). The goal of this work is to quantitatively compare popular automatic EEG artifact rejection approaches with robust classification methods in terms of motor imagery (MI) classification paradigm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动伪迹去除方法与鲁棒分类策略在脑电分类准确率方面的比较
脑机接口(BCI)设计的关键目标之一是构建准确的基于脑电图(EEG)的分类器。但是在实验室外,所有的脑电信号都受到伪影的污染,这阻碍了算法处理和脑电信号分析,即分类器需要对有噪声的数据进行预测。实时脑机接口系统依赖于相对清晰的脑电信号。因此,排除工件对于日常生活中的BCI应用程序具有特殊的意义。实现这一目标的主要方法有两种:自动脑电信号伪迹抑制方法(减去噪声成分)和鲁棒分类方法(用鲁棒对应物取代对异常值估计的敏感)。这项工作的目的是定量比较流行的自动脑电信号伪迹抑制方法与鲁棒分类方法在运动意象(MI)分类范式方面的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Principles of organization and control of multielectrode neuro-electrostimulation device Digraph based medical treatment planning Feasibility of a capnometry device for respiratory biofeedback in patients undergoing coronary artery bypass graft surgery Computer modeling of stress-strain state of the intact portion of the coronary artery with circular irregular stenosis Multiplex detection of IgG class antibodies to Toxoplasma gondii, Rubella virus, Cytomegalovirus and Herpes virus using a novel multiplex flow immunoassay
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1