Hybrid Micro-Energy Harvesting Model using WSN for Self-Sustainable Wireless Mobile Charging Application

Haoxiang Wang
{"title":"Hybrid Micro-Energy Harvesting Model using WSN for Self-Sustainable Wireless Mobile Charging Application","authors":"Haoxiang Wang","doi":"10.36548/jsws.2021.3.003","DOIUrl":null,"url":null,"abstract":"The self-sustainable Wireless Sensor Networks (WSNs) face a major challenge in terms of energy efficiency as they have to operate without replacement of batteries. The benefits of renewable and green energy are taken into consideration for sensing and charging the battery in recent literatures using Energy Harvesting (EH) techniques. The sensors are provided with a reliable energy source through Wireless Charging (WC) techniques. Several challenges in WSN are addressed by combining these technologies. However, it is essential to consider the deployment cost in these systems. This paper presents a self-sustainable energy efficient WSN based model for Mobile Charger (MC) and Energy Harvesting Base Station (EHBS) while considering the cost of deployment. This system can also be used for low-cost microelectronic devices and low-cost Micro-Energy Harvesting (MEH) system-based applications. While considering the deployment cost, the network lifetime is maximized and an extensive comparison of simulation with various existing models is presented to emphasize the validity of the proposed model.","PeriodicalId":10896,"journal":{"name":"Day 1 Tue, September 21, 2021","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, September 21, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36548/jsws.2021.3.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The self-sustainable Wireless Sensor Networks (WSNs) face a major challenge in terms of energy efficiency as they have to operate without replacement of batteries. The benefits of renewable and green energy are taken into consideration for sensing and charging the battery in recent literatures using Energy Harvesting (EH) techniques. The sensors are provided with a reliable energy source through Wireless Charging (WC) techniques. Several challenges in WSN are addressed by combining these technologies. However, it is essential to consider the deployment cost in these systems. This paper presents a self-sustainable energy efficient WSN based model for Mobile Charger (MC) and Energy Harvesting Base Station (EHBS) while considering the cost of deployment. This system can also be used for low-cost microelectronic devices and low-cost Micro-Energy Harvesting (MEH) system-based applications. While considering the deployment cost, the network lifetime is maximized and an extensive comparison of simulation with various existing models is presented to emphasize the validity of the proposed model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于WSN的混合微能量收集模型在自持续无线移动充电中的应用
自我可持续的无线传感器网络(wsn)在能源效率方面面临着重大挑战,因为它们必须在不更换电池的情况下运行。近年来,利用能量收集(EH)技术对电池进行传感和充电,考虑了可再生能源和绿色能源的优势。通过无线充电技术为传感器提供可靠的能量来源。通过这些技术的结合,解决了无线传感器网络的一些挑战。然而,必须考虑这些系统中的部署成本。在考虑部署成本的前提下,提出了一种基于无线传感器网络的移动充电器和能量收集基站的自我可持续节能模型。该系统还可用于低成本微电子器件和基于低成本微能量收集(MEH)系统的应用。在考虑部署成本的同时,使网络寿命最大化,并与各种现有模型进行了广泛的仿真比较,以强调所提模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pollination Inspired Clustering Model for Wireless Sensor Network Optimization Three Phase Coil based Optimized Wireless Charging System for Electric Vehicles Wireless Power Transfer Device Based on RF Energy Circuit and Transformer Coupling Procedure Hybrid Micro-Energy Harvesting Model using WSN for Self-Sustainable Wireless Mobile Charging Application Automated Multimodal Fusion Technique for the Classification of Human Brain on Alzheimer’s Disorder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1