{"title":"CURCUMIN LOADED POLYMERIC MICROSPHERES FOR VAGINAL DELIVERY: FORMULATION DESIGN, IN VITRO EVALUATION, KINETICS AND STABILITY STUDIES","authors":"J. Nesalin, Shafiya Khanum","doi":"10.7897/2277-4572.102206","DOIUrl":null,"url":null,"abstract":"The main objective of this research is to evaluate a new approach for the preparation of bio adhesive microparticles and to design an innovative vaginal delivery system for curcumin which is able to enhance the drug anticancer activity. Curcumin encapsulated microspheres were prepared by solvent evaporation method. The microspheres were found to be discrete, spherical with free-flowing properties and evaluated for particle size analysis, shape (scanning electron microscopy), drug encapsulation efficiency, FTIR, DSC studies and in vitro release performance. The best selected microsphere formulation (F2, containing drug: polymer ratio 1:2) was incorporated into gels with a bio adhesive polymer. The microencapsulated vaginal gels were evaluated for pH, spreadability, extrudability, viscosity, in vitro drug release, drug release kinetics, bio adhesion test, accelerated stability of selected gel formulation. In vitro drug release rate for selected microencapsulated bio adhesive vaginal gel (FS3 gel, containing 1 % w/w of drug loaded microspheres and 0.6 % w/w of Carbopol 934) was found to sustain curcumin over 12h. The results were then compared statistically and obtained a satisfactory correlation. Thus, in conclusion preparation protocol of microencapsulated vaginal gel study may be adopted for a successful development of newer drug delivery system of other drugs for administration to vagina.","PeriodicalId":16738,"journal":{"name":"Journal of Pharmaceutical and Scientific Innovation","volume":"38 1","pages":"56-60"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmaceutical and Scientific Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7897/2277-4572.102206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The main objective of this research is to evaluate a new approach for the preparation of bio adhesive microparticles and to design an innovative vaginal delivery system for curcumin which is able to enhance the drug anticancer activity. Curcumin encapsulated microspheres were prepared by solvent evaporation method. The microspheres were found to be discrete, spherical with free-flowing properties and evaluated for particle size analysis, shape (scanning electron microscopy), drug encapsulation efficiency, FTIR, DSC studies and in vitro release performance. The best selected microsphere formulation (F2, containing drug: polymer ratio 1:2) was incorporated into gels with a bio adhesive polymer. The microencapsulated vaginal gels were evaluated for pH, spreadability, extrudability, viscosity, in vitro drug release, drug release kinetics, bio adhesion test, accelerated stability of selected gel formulation. In vitro drug release rate for selected microencapsulated bio adhesive vaginal gel (FS3 gel, containing 1 % w/w of drug loaded microspheres and 0.6 % w/w of Carbopol 934) was found to sustain curcumin over 12h. The results were then compared statistically and obtained a satisfactory correlation. Thus, in conclusion preparation protocol of microencapsulated vaginal gel study may be adopted for a successful development of newer drug delivery system of other drugs for administration to vagina.