M. Natsui, D. Suzuki, N. Sakimura, R. Nebashi, Y. Tsuji, A. Morioka, T. Sugibayashi, S. Miura, H. Honjo, K. Kinoshita, S. Ikeda, T. Endoh, H. Ohno, T. Hanyu
{"title":"Nonvolatile logic-in-memory array processor in 90nm MTJ/MOS achieving 75% leakage reduction using cycle-based power gating","authors":"M. Natsui, D. Suzuki, N. Sakimura, R. Nebashi, Y. Tsuji, A. Morioka, T. Sugibayashi, S. Miura, H. Honjo, K. Kinoshita, S. Ikeda, T. Endoh, H. Ohno, T. Hanyu","doi":"10.1109/ISSCC.2013.6487696","DOIUrl":null,"url":null,"abstract":"Nonvolatile logic-in-memory (NV-LIM) architecture [1], where magnetic tunnel junction (MTJ) devices [2] are distributed over a CMOS logic-circuit plane, has the potential of overcoming the serious power-consumption problem that has rapidly become a dominant constraint on the performance improvement of today's VLSI processors. Normally-off and instant-on capabilities with a small area penalty due to non-volatility and three-dimensional-stackability of MTJ devices in the above structure allow us to apply a power-gating technique in a fine temporal granularity, which can perfectly eliminate wasted power dissipation due to leakage current. The impact of embedding nonvolatile memory devices into a logic circuit was, however, demonstrated by using only small fabricated primitive logic-circuit elements [3], memory-like structures such as FPGA [4], or circuit simulation because of the lack of an established MTJ-oriented design flow reflecting the chip-fabrication environment, while larger-capacity and/or high-speed-access MRAM has been increasingly developed. In this paper, we present an MTJ/MOS-hybrid video coding hardware that uses a cycle-based power-gating technique for a practical-scale MTJ-based NV-LIM LSI, which is fully designed using the established semi-automated MTJ-oriented design flow.","PeriodicalId":6378,"journal":{"name":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","volume":"248 1","pages":"194-195"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2013.6487696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66
Abstract
Nonvolatile logic-in-memory (NV-LIM) architecture [1], where magnetic tunnel junction (MTJ) devices [2] are distributed over a CMOS logic-circuit plane, has the potential of overcoming the serious power-consumption problem that has rapidly become a dominant constraint on the performance improvement of today's VLSI processors. Normally-off and instant-on capabilities with a small area penalty due to non-volatility and three-dimensional-stackability of MTJ devices in the above structure allow us to apply a power-gating technique in a fine temporal granularity, which can perfectly eliminate wasted power dissipation due to leakage current. The impact of embedding nonvolatile memory devices into a logic circuit was, however, demonstrated by using only small fabricated primitive logic-circuit elements [3], memory-like structures such as FPGA [4], or circuit simulation because of the lack of an established MTJ-oriented design flow reflecting the chip-fabrication environment, while larger-capacity and/or high-speed-access MRAM has been increasingly developed. In this paper, we present an MTJ/MOS-hybrid video coding hardware that uses a cycle-based power-gating technique for a practical-scale MTJ-based NV-LIM LSI, which is fully designed using the established semi-automated MTJ-oriented design flow.