Elias Garcia, Gerald Stutes, Christoffer Nåden, K. Borgersen
{"title":"Monitoring Dynamic Reservoir Pressure Responses Through Cement","authors":"Elias Garcia, Gerald Stutes, Christoffer Nåden, K. Borgersen","doi":"10.2118/196168-ms","DOIUrl":null,"url":null,"abstract":"\n During the last five years, the use of permanent downhole gauges has proliferated in the industry. The availability of true bottomhole pressure (BHP) is imperative in validating/improving reservoir models. Similarly to the extrapolation of BHP from surface readings, the use of BHP to extrapolate formation pressure may lead to significant errors in reservoir models that do not provide operators with the competitive edge needed in the current market. Consequently, there is a drive to monitor formation pressure in-situ by placing pressure and temperature gauges in direct contact with the formation.\n In recent years, operators have been drilling larger holes, deploying gauge systems on the exterior of the casing, and cementing the gauge systems in place for multiple purposes. In artificial lift applications, cemented gauge systems have helped operators to avoid costs of decompleting and redeploying gauge systems on tubing whenever the electric submersible pumps (ESP) must be serviced, or perhaps whenever operators want to convert an observation well to a producing well.\n In unconventional plays, technologies involving quartz pressure and temperature gauges, oriented perforating, and well conditioning practices can enable operators to deploy multiple real-time downhole pressure and temperature gauges on casing across long horizontal sections of a wellbore. This, in turn, can provide valuable production data with which to understand cluster production performance, cross-well communication, fracture azimuth, well spacing, and stage-length production implications.\n Cemented gauges enable operators to understand pressure dynamics in the overburden, cap rock, or reservoir sections. The permanently installed, casing-deployed gauges connect to the surface through cable or through deployment of wireless inductive coupling technology.","PeriodicalId":10909,"journal":{"name":"Day 2 Tue, October 01, 2019","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, October 01, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/196168-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
During the last five years, the use of permanent downhole gauges has proliferated in the industry. The availability of true bottomhole pressure (BHP) is imperative in validating/improving reservoir models. Similarly to the extrapolation of BHP from surface readings, the use of BHP to extrapolate formation pressure may lead to significant errors in reservoir models that do not provide operators with the competitive edge needed in the current market. Consequently, there is a drive to monitor formation pressure in-situ by placing pressure and temperature gauges in direct contact with the formation.
In recent years, operators have been drilling larger holes, deploying gauge systems on the exterior of the casing, and cementing the gauge systems in place for multiple purposes. In artificial lift applications, cemented gauge systems have helped operators to avoid costs of decompleting and redeploying gauge systems on tubing whenever the electric submersible pumps (ESP) must be serviced, or perhaps whenever operators want to convert an observation well to a producing well.
In unconventional plays, technologies involving quartz pressure and temperature gauges, oriented perforating, and well conditioning practices can enable operators to deploy multiple real-time downhole pressure and temperature gauges on casing across long horizontal sections of a wellbore. This, in turn, can provide valuable production data with which to understand cluster production performance, cross-well communication, fracture azimuth, well spacing, and stage-length production implications.
Cemented gauges enable operators to understand pressure dynamics in the overburden, cap rock, or reservoir sections. The permanently installed, casing-deployed gauges connect to the surface through cable or through deployment of wireless inductive coupling technology.