Tommaso Iannaccone, G. E. Scarponi, B. Jeong, V. Cozzani
{"title":"Assessment of Lng Fire Scenarios on Board of Lng-fuelled Ships","authors":"Tommaso Iannaccone, G. E. Scarponi, B. Jeong, V. Cozzani","doi":"10.3303/CET2186065","DOIUrl":null,"url":null,"abstract":"Decarbonization represent one of the main challenges of the maritime transport sector for the near future. As recent international environmental regulations have set more stringent emission limits, the use of liquefied natural gas (LNG) as alternative ship fuel has proven to be a viable and less-polluting solution, compared to conventional oil-based fuels. However, LNG is a highly flammable substance and safety aspects need to be assessed thoroughly, especially for its use on board passenger ships.Two different gas engine concepts are typically used for ship propulsion: Low-Pressure Dual Fuel (LPDF) and High-Pressure Dual Fuel (HPDF) engines. Regardless of the gas engine technology, the fuel gas supply system process equipment is located inside a specific enclosed space, the fuel preparation room (FPR), that can be sited below deck. Given this background, this study aims to investigate the consequences of LNG pool fires occurring inside a confined space, assessing the influence of different operating conditions. Credible loss of containment events were identified to define the characteristics of LNG pools. Furthermore, LNG pool fires were simulated using the fire dynamic simulator (FDS) to estimate the radiation heat flux received by the process equipment installed inside the FPR and to assess the possibility of experiencing accident escalation on board. To evaluate the effect of forced mechanical ventilation of the FPR, two different cases were modelled: one assuming the standard functioning of the ventilation system, while the other one considered a halted air supply inside the FPR with a working exhaust system only. The outcomes of this study provide useful data for the consequence estimation of small-scale LNG pool fires occurring inside enclosed spaces, also addressing the possibility of accident escalation on board LNG-fuelled ships.","PeriodicalId":9695,"journal":{"name":"Chemical engineering transactions","volume":"43 1","pages":"385-390"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical engineering transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3303/CET2186065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 2
Abstract
Decarbonization represent one of the main challenges of the maritime transport sector for the near future. As recent international environmental regulations have set more stringent emission limits, the use of liquefied natural gas (LNG) as alternative ship fuel has proven to be a viable and less-polluting solution, compared to conventional oil-based fuels. However, LNG is a highly flammable substance and safety aspects need to be assessed thoroughly, especially for its use on board passenger ships.Two different gas engine concepts are typically used for ship propulsion: Low-Pressure Dual Fuel (LPDF) and High-Pressure Dual Fuel (HPDF) engines. Regardless of the gas engine technology, the fuel gas supply system process equipment is located inside a specific enclosed space, the fuel preparation room (FPR), that can be sited below deck. Given this background, this study aims to investigate the consequences of LNG pool fires occurring inside a confined space, assessing the influence of different operating conditions. Credible loss of containment events were identified to define the characteristics of LNG pools. Furthermore, LNG pool fires were simulated using the fire dynamic simulator (FDS) to estimate the radiation heat flux received by the process equipment installed inside the FPR and to assess the possibility of experiencing accident escalation on board. To evaluate the effect of forced mechanical ventilation of the FPR, two different cases were modelled: one assuming the standard functioning of the ventilation system, while the other one considered a halted air supply inside the FPR with a working exhaust system only. The outcomes of this study provide useful data for the consequence estimation of small-scale LNG pool fires occurring inside enclosed spaces, also addressing the possibility of accident escalation on board LNG-fuelled ships.
期刊介绍:
Chemical Engineering Transactions (CET) aims to be a leading international journal for publication of original research and review articles in chemical, process, and environmental engineering. CET begin in 2002 as a vehicle for publication of high-quality papers in chemical engineering, connected with leading international conferences. In 2014, CET opened a new era as an internationally-recognised journal. Articles containing original research results, covering any aspect from molecular phenomena through to industrial case studies and design, with a strong influence of chemical engineering methodologies and ethos are particularly welcome. We encourage state-of-the-art contributions relating to the future of industrial processing, sustainable design, as well as transdisciplinary research that goes beyond the conventional bounds of chemical engineering. Short reviews on hot topics, emerging technologies, and other areas of high interest should highlight unsolved challenges and provide clear directions for future research. The journal publishes periodically with approximately 6 volumes per year. Core topic areas: -Batch processing- Biotechnology- Circular economy and integration- Environmental engineering- Fluid flow and fluid mechanics- Green materials and processing- Heat and mass transfer- Innovation engineering- Life cycle analysis and optimisation- Modelling and simulation- Operations and supply chain management- Particle technology- Process dynamics, flexibility, and control- Process integration and design- Process intensification and optimisation- Process safety- Product development- Reaction engineering- Renewable energy- Separation processes- Smart industry, city, and agriculture- Sustainability- Systems engineering- Thermodynamic- Waste minimisation, processing and management- Water and wastewater engineering