N. K. Pandey, A. Roy, K. Tiwari, A. Mishra, A. Rai, S. Jayaswal, M. Rashmi, A. Govindan
{"title":"Humidity sensor based on synthesized pure WO3 and WO3-SnO2 nanocomposite","authors":"N. K. Pandey, A. Roy, K. Tiwari, A. Mishra, A. Rai, S. Jayaswal, M. Rashmi, A. Govindan","doi":"10.1109/ISPTS.2012.6260899","DOIUrl":null,"url":null,"abstract":"In this paper we report humidity sensing studies of undoped and SnO<inf>2</inf> doped WO<inf>3</inf>. Sensitivity is 13.48 MΩ/%RH for WO<inf>3</inf>-SnO<inf>2</inf> nanocomposite. Hysteresis is less than 3% for WO<inf>3</inf>-SnO<inf>2</inf> nanocomposite. Aging for WO<inf>3</inf>-SnO<inf>2</inf> nanocomposite is 5.7%. Activation energy for conduction obtained from Arrhenius graph are 0.127 eV in 27°C to 200°C and 0.547 eV in 200°C to 600°C temperature range . Response time and recovery time for sample WO<inf>3</inf>-SnO<inf>2</inf> nanocomposite are 117 s and 411 s respectively, while that for sample WO<inf>3</inf> are 172 s and 557 s respectively. Average grain size calculated from SEM micrographs for WO<inf>3</inf> and WO<inf>3</inf>-SnO<inf>2</inf> nanocomposite are 135 nm and 150 nm respectively.","PeriodicalId":6431,"journal":{"name":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","volume":"54 1","pages":"129-132"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPTS.2012.6260899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper we report humidity sensing studies of undoped and SnO2 doped WO3. Sensitivity is 13.48 MΩ/%RH for WO3-SnO2 nanocomposite. Hysteresis is less than 3% for WO3-SnO2 nanocomposite. Aging for WO3-SnO2 nanocomposite is 5.7%. Activation energy for conduction obtained from Arrhenius graph are 0.127 eV in 27°C to 200°C and 0.547 eV in 200°C to 600°C temperature range . Response time and recovery time for sample WO3-SnO2 nanocomposite are 117 s and 411 s respectively, while that for sample WO3 are 172 s and 557 s respectively. Average grain size calculated from SEM micrographs for WO3 and WO3-SnO2 nanocomposite are 135 nm and 150 nm respectively.