D. Lioubtchenko, I. Anoshkin, I. Nefedova, J. Oberhammer, A. Räisänen
{"title":"W-band phase shifter based on optimized optically controlled carbon nanotube layer","authors":"D. Lioubtchenko, I. Anoshkin, I. Nefedova, J. Oberhammer, A. Räisänen","doi":"10.1109/MWSYM.2017.8058815","DOIUrl":null,"url":null,"abstract":"Phase shifting in a dielectric rod waveguide (DRW), loaded with carbon nanotube (CNT) layers of different thickness, was studied experimentally under light illumination in the frequency range of 75–110 GHz. The dependence of efficiency of the phase shifting, in terms of phase shift per light intensity and millimeter wave attenuation, on the optical transparency of the CNT-layer is investigated in this paper. The best result, a phase shifter of 0–15° with less than 0.1 dB additional signal loss in the W-band was achieved for a 95% transparent CNT layer at 23 mW/mm2 light intensity of a tungsten halogen lamp (main radiation spectrum is 550–680 nm). The overall insertion loss of the phase shifter including two DRW tapering sections serving as transitions to rectangular waveguides are 3 to 5 dB in the W-band, about 2 dB is attributed to the CNT DRW section. This comprises, for the first time, an optically-controlled CNT-based DRW phase shifter with phase shift and insertion loss levels suitable for practical applications.","PeriodicalId":6481,"journal":{"name":"2017 IEEE MTT-S International Microwave Symposium (IMS)","volume":"127 1","pages":"1188-1191"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2017.8058815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Phase shifting in a dielectric rod waveguide (DRW), loaded with carbon nanotube (CNT) layers of different thickness, was studied experimentally under light illumination in the frequency range of 75–110 GHz. The dependence of efficiency of the phase shifting, in terms of phase shift per light intensity and millimeter wave attenuation, on the optical transparency of the CNT-layer is investigated in this paper. The best result, a phase shifter of 0–15° with less than 0.1 dB additional signal loss in the W-band was achieved for a 95% transparent CNT layer at 23 mW/mm2 light intensity of a tungsten halogen lamp (main radiation spectrum is 550–680 nm). The overall insertion loss of the phase shifter including two DRW tapering sections serving as transitions to rectangular waveguides are 3 to 5 dB in the W-band, about 2 dB is attributed to the CNT DRW section. This comprises, for the first time, an optically-controlled CNT-based DRW phase shifter with phase shift and insertion loss levels suitable for practical applications.