W-band phase shifter based on optimized optically controlled carbon nanotube layer

D. Lioubtchenko, I. Anoshkin, I. Nefedova, J. Oberhammer, A. Räisänen
{"title":"W-band phase shifter based on optimized optically controlled carbon nanotube layer","authors":"D. Lioubtchenko, I. Anoshkin, I. Nefedova, J. Oberhammer, A. Räisänen","doi":"10.1109/MWSYM.2017.8058815","DOIUrl":null,"url":null,"abstract":"Phase shifting in a dielectric rod waveguide (DRW), loaded with carbon nanotube (CNT) layers of different thickness, was studied experimentally under light illumination in the frequency range of 75–110 GHz. The dependence of efficiency of the phase shifting, in terms of phase shift per light intensity and millimeter wave attenuation, on the optical transparency of the CNT-layer is investigated in this paper. The best result, a phase shifter of 0–15° with less than 0.1 dB additional signal loss in the W-band was achieved for a 95% transparent CNT layer at 23 mW/mm2 light intensity of a tungsten halogen lamp (main radiation spectrum is 550–680 nm). The overall insertion loss of the phase shifter including two DRW tapering sections serving as transitions to rectangular waveguides are 3 to 5 dB in the W-band, about 2 dB is attributed to the CNT DRW section. This comprises, for the first time, an optically-controlled CNT-based DRW phase shifter with phase shift and insertion loss levels suitable for practical applications.","PeriodicalId":6481,"journal":{"name":"2017 IEEE MTT-S International Microwave Symposium (IMS)","volume":"127 1","pages":"1188-1191"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2017.8058815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Phase shifting in a dielectric rod waveguide (DRW), loaded with carbon nanotube (CNT) layers of different thickness, was studied experimentally under light illumination in the frequency range of 75–110 GHz. The dependence of efficiency of the phase shifting, in terms of phase shift per light intensity and millimeter wave attenuation, on the optical transparency of the CNT-layer is investigated in this paper. The best result, a phase shifter of 0–15° with less than 0.1 dB additional signal loss in the W-band was achieved for a 95% transparent CNT layer at 23 mW/mm2 light intensity of a tungsten halogen lamp (main radiation spectrum is 550–680 nm). The overall insertion loss of the phase shifter including two DRW tapering sections serving as transitions to rectangular waveguides are 3 to 5 dB in the W-band, about 2 dB is attributed to the CNT DRW section. This comprises, for the first time, an optically-controlled CNT-based DRW phase shifter with phase shift and insertion loss levels suitable for practical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于优化光控碳纳米管层的w波段移相器
实验研究了负载不同厚度碳纳米管(CNT)层的介质杆波导(DRW)在75 ~ 110 GHz光照射下的相移特性。本文研究了相移效率,即每光强相移和毫米波衰减对碳纳米管层光学透明度的依赖关系。在23 mW/mm2的卤钨灯(主辐射光谱为550-680 nm)光强下,95%透明碳纳米管层的w波段移相量为0-15°,附加信号损失小于0.1 dB。移相器的总插入损耗,包括作为矩形波导过渡的两个DRW锥形部分,在w波段为3至5db,其中约2db归因于CNT DRW部分。这包括第一次光学控制的基于碳纳米管的DRW移相器,其移相和插入损耗水平适合于实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microwave noninvasive blood glucose monitoring sensor: Human clinical trial results A Broadband Reconfigurable Load Modulated Balanced Amplifier (LMBA) Fast two dimensional position update system for UHF RFID tag tracking W-band phase shifter based on optimized optically controlled carbon nanotube layer Broadband LDMOS 40 W and 55 W integrated power amplifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1