Forecasting model for degradation path and parameter estimation based on neural network

C. Su, Y. Jiang
{"title":"Forecasting model for degradation path and parameter estimation based on neural network","authors":"C. Su, Y. Jiang","doi":"10.1109/ICIEEM.2009.5344341","DOIUrl":null,"url":null,"abstract":"Traditional life evaluation theory established on the basis of mass failure data, the phenomena of little or naught failure put forward challenges for existed life evaluation theory. The performance degradation data provide useful information for products' reliability and gives feasible way for products' life evaluation. The limitations of existing degradation models are analyzed, a new forecasting model and parameter estimation method based on neural network is brought forward. By using back propagation neural network(BPNN), the nonlinear degradation path of product performance can be got, and the parameters can be estimated by self-adaptive neural network. An example is given out to validate the effectiveness of the method and compared with existing model.","PeriodicalId":6326,"journal":{"name":"2009 16th International Conference on Industrial Engineering and Engineering Management","volume":"92 1","pages":"1735-1738"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 16th International Conference on Industrial Engineering and Engineering Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEEM.2009.5344341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Traditional life evaluation theory established on the basis of mass failure data, the phenomena of little or naught failure put forward challenges for existed life evaluation theory. The performance degradation data provide useful information for products' reliability and gives feasible way for products' life evaluation. The limitations of existing degradation models are analyzed, a new forecasting model and parameter estimation method based on neural network is brought forward. By using back propagation neural network(BPNN), the nonlinear degradation path of product performance can be got, and the parameters can be estimated by self-adaptive neural network. An example is given out to validate the effectiveness of the method and compared with existing model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的退化路径预测模型及参数估计
传统的寿命评价理论是建立在大量失效数据基础上的,失效少或无失效现象对现有的寿命评价理论提出了挑战。性能退化数据为产品的可靠性提供了有用的信息,为产品的寿命评估提供了可行的方法。分析了现有退化模型的局限性,提出了一种新的基于神经网络的退化预测模型和参数估计方法。利用反向传播神经网络(BPNN)可以得到产品性能的非线性退化路径,并通过自适应神经网络对参数进行估计。通过算例验证了该方法的有效性,并与现有模型进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Binary search tree visualization algorithm Dynamic alliance partner selection and its negotiation strategy based on agent and resources Research on reverse logistics-oriented multisources inventory control model The syncretism of capital structure theory: An explanation from adjustment speed of capital structure Research on the security model for e-business process management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1