Ming Dun, Yunchun Li, Hailong Yang, Qingxiao Sun, Zhongzhi Luan, D. Qian
{"title":"An optimized tensor completion library for multiple GPUs","authors":"Ming Dun, Yunchun Li, Hailong Yang, Qingxiao Sun, Zhongzhi Luan, D. Qian","doi":"10.1145/3447818.3460692","DOIUrl":null,"url":null,"abstract":"Tensor computations are gaining wide adoption in big data analysis and artificial intelligence. Among them, tensor completion is used to predict the missing or unobserved value in tensors. The decomposition-based tensor completion algorithms have attracted significant research attention since they exhibit better parallelization and scalability. However, existing optimization techniques for tensor completion cannot sustain the increasing demand for applying tensor completion on ever larger tensor data. To address the above limitations, we develop the first tensor completion library cuTC on multiple Graphics Processing Units (GPUs) with three widely used optimization algorithms such as alternating least squares (ALS), stochastic gradient descent (SGD) and coordinate descent (CCD+). We propose a novel TB-COO format that leverages warp shuffle and shared memory on GPU to enable efficient reduction. In addition, we adopt the auto-tuning method to determine the optimal parameters for better convergence and performance. We compare cuTC with state-of-the-art tensor completion libraries on real-world datasets, and the results show cuTC achieves significant speedup with similar or even better accuracy.","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447818.3460692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Tensor computations are gaining wide adoption in big data analysis and artificial intelligence. Among them, tensor completion is used to predict the missing or unobserved value in tensors. The decomposition-based tensor completion algorithms have attracted significant research attention since they exhibit better parallelization and scalability. However, existing optimization techniques for tensor completion cannot sustain the increasing demand for applying tensor completion on ever larger tensor data. To address the above limitations, we develop the first tensor completion library cuTC on multiple Graphics Processing Units (GPUs) with three widely used optimization algorithms such as alternating least squares (ALS), stochastic gradient descent (SGD) and coordinate descent (CCD+). We propose a novel TB-COO format that leverages warp shuffle and shared memory on GPU to enable efficient reduction. In addition, we adopt the auto-tuning method to determine the optimal parameters for better convergence and performance. We compare cuTC with state-of-the-art tensor completion libraries on real-world datasets, and the results show cuTC achieves significant speedup with similar or even better accuracy.