J. Liu, J. Luo, J. Li, C. Chen, G. L. Wang, T. Chen, T. T. Li, J. Zhong, D. Wu, P. Xu, C. Zhao
{"title":"Co-implantation with microwave annealing for phosphorous shallow-junction formation in Germanium","authors":"J. Liu, J. Luo, J. Li, C. Chen, G. L. Wang, T. Chen, T. T. Li, J. Zhong, D. Wu, P. Xu, C. Zhao","doi":"10.1109/IIT.2014.6939956","DOIUrl":null,"url":null,"abstract":"The formation of N-type Ge shallow junction is investigated in this work. By combining carbon co-implantation and microwave annealing (MWA) method, the junction depth of 34 nm measured by secondary ion mass spectroscopy (SIMS) as well as sheet resistance of 467 ohm/sq measured by Hall is achieved. Results show that the opitimal carbon implantation energy is 8 keV in that distributed carbon ions at such an energy can effectively trap vacancies and phosphorous into immobile clusters. The recrystallization of amorphous layer after MWA annealing is also studied by both ellipsometry and transmission electron microscopy (TEM).","PeriodicalId":6548,"journal":{"name":"2014 20th International Conference on Ion Implantation Technology (IIT)","volume":"4 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 20th International Conference on Ion Implantation Technology (IIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIT.2014.6939956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The formation of N-type Ge shallow junction is investigated in this work. By combining carbon co-implantation and microwave annealing (MWA) method, the junction depth of 34 nm measured by secondary ion mass spectroscopy (SIMS) as well as sheet resistance of 467 ohm/sq measured by Hall is achieved. Results show that the opitimal carbon implantation energy is 8 keV in that distributed carbon ions at such an energy can effectively trap vacancies and phosphorous into immobile clusters. The recrystallization of amorphous layer after MWA annealing is also studied by both ellipsometry and transmission electron microscopy (TEM).