Binary decision diagram to design balanced secure logic styles

Hyunmin Kim, Seokhie Hong, B. Preneel, I. Verbauwhede
{"title":"Binary decision diagram to design balanced secure logic styles","authors":"Hyunmin Kim, Seokhie Hong, B. Preneel, I. Verbauwhede","doi":"10.1109/IOLTS.2016.7604710","DOIUrl":null,"url":null,"abstract":"Embedded implementations of cryptographic algorithms require countermeasures against side-channel attacks (SCAs), that exploit physical variables measured during the computation. These countermeasures increase cost, power consumption and latency of the device. One class of countermeasures, hiding, consists of a balanced circuit style, including balancing of the capacitances and delays; it requires full connection to avoid memory effect that is an effect caused by repeatedly recharged energy after being only partially discharged at the internal parasitic capacitance. This paper proposes binary decision diagrams (BDDs) to derive complex pull-down networks that fulfill all these requirements while being compact at the same time; it uses sense amplifier-based logic (SABL) to obtain well-balanced pre-charge circuits. An attack based on mutual information analysis (MIA) is applied to the AES S-boxes implemented in our novel secure logic style. After the evaluation at pre-layout SPICE level, the balanced circuit with BDD leaks less information than comparable logic styles, even though the implementation area is reduced by 40.6%, the power consumption up to 46.1% and the delay by 35.2% compared to the classic SABL approach.","PeriodicalId":6580,"journal":{"name":"2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS)","volume":"104 1","pages":"239-244"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOLTS.2016.7604710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Embedded implementations of cryptographic algorithms require countermeasures against side-channel attacks (SCAs), that exploit physical variables measured during the computation. These countermeasures increase cost, power consumption and latency of the device. One class of countermeasures, hiding, consists of a balanced circuit style, including balancing of the capacitances and delays; it requires full connection to avoid memory effect that is an effect caused by repeatedly recharged energy after being only partially discharged at the internal parasitic capacitance. This paper proposes binary decision diagrams (BDDs) to derive complex pull-down networks that fulfill all these requirements while being compact at the same time; it uses sense amplifier-based logic (SABL) to obtain well-balanced pre-charge circuits. An attack based on mutual information analysis (MIA) is applied to the AES S-boxes implemented in our novel secure logic style. After the evaluation at pre-layout SPICE level, the balanced circuit with BDD leaks less information than comparable logic styles, even though the implementation area is reduced by 40.6%, the power consumption up to 46.1% and the delay by 35.2% compared to the classic SABL approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二元决策图设计平衡的安全逻辑样式
加密算法的嵌入式实现需要针对侧信道攻击(sca)的对策,这种攻击利用在计算过程中测量的物理变量。这些对策增加了设备的成本、功耗和延迟。一类对抗措施,隐藏,由平衡电路风格组成,包括平衡电容和延迟;它需要完全连接,以避免记忆效应,即能量在内部寄生电容处仅部分放电后反复充电造成的效应。本文提出了二元决策图(bdd)来推导复杂的下拉网络,该网络在满足所有这些要求的同时又具有紧凑性;它使用基于感测放大器的逻辑(SABL)来获得平衡良好的预充电电路。本文提出了一种基于互信息分析(MIA)的AES s -box攻击方法。经过布局前SPICE水平的评估,与同类逻辑风格相比,BDD平衡电路泄漏的信息更少,尽管与经典SABL方法相比,实现面积减少了40.6%,功耗减少了46.1%,延迟减少了35.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keytone: Silent Data Corruptions at Scale Welcome Field profiling & monitoring of payload transistors in FPGAs Statistical analysis and comparison of 2T and 3T1D e-DRAM minimum energy operation NBTI aging evaluation of PUF-based differential architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1