Design of a Linear Quadratic Regulator Based on Genetic Model Reference Adaptive Control

A. Abdullah, A. Mahmood, Mohammad A. Thanoon
{"title":"Design of a Linear Quadratic Regulator Based on Genetic Model Reference Adaptive Control","authors":"A. Abdullah, A. Mahmood, Mohammad A. Thanoon","doi":"10.14313/jamris/3-2022/26","DOIUrl":null,"url":null,"abstract":"Abstract The conventional control system is a controller that controls or regulates the dynamics of any other process. From time to time, a conventional control system may not behave appropriately online; this is because of many factors like a variation in the dynamics of the process itself, unexpected changes in the environment, or even undefined parameters of the system model. To overcome this problem, we have designed and implemented an adaptive controller. This paper discusses the design of a controller for a ball and beam system with Genetic Model Reference Adaptive Control (GMRAC) for an adaptive mechanism with the MIT rule. Parameter adjustment (selection) should occur using optimization methods to obtain an optimal performance, so the genetic algorithm (GA) will be used as an optimization method to obtain the optimum values for these parameters. The Linear Quadratic Regulator (LQR) controller will be used as it is one of the most popular controllers. The performance of the proposed controller with the ball and beam system will be carried out with MATLAB Simulink in order to evaluate its effectiveness. The results show satisfactory performance where the position of the ball tracks the desired model reference.","PeriodicalId":37910,"journal":{"name":"Journal of Automation, Mobile Robotics and Intelligent Systems","volume":"16 1","pages":"75 - 81"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation, Mobile Robotics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14313/jamris/3-2022/26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The conventional control system is a controller that controls or regulates the dynamics of any other process. From time to time, a conventional control system may not behave appropriately online; this is because of many factors like a variation in the dynamics of the process itself, unexpected changes in the environment, or even undefined parameters of the system model. To overcome this problem, we have designed and implemented an adaptive controller. This paper discusses the design of a controller for a ball and beam system with Genetic Model Reference Adaptive Control (GMRAC) for an adaptive mechanism with the MIT rule. Parameter adjustment (selection) should occur using optimization methods to obtain an optimal performance, so the genetic algorithm (GA) will be used as an optimization method to obtain the optimum values for these parameters. The Linear Quadratic Regulator (LQR) controller will be used as it is one of the most popular controllers. The performance of the proposed controller with the ball and beam system will be carried out with MATLAB Simulink in order to evaluate its effectiveness. The results show satisfactory performance where the position of the ball tracks the desired model reference.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传模型参考自适应控制的线性二次型调节器设计
传统的控制系统是控制或调节任何其他过程的动态的控制器。有时,传统的控制系统可能无法正常运行;这是由于许多因素造成的,比如过程本身的动态变化、环境中的意外变化,甚至是系统模型中未定义的参数。为了克服这个问题,我们设计并实现了一个自适应控制器。本文讨论了采用遗传模型参考自适应控制(GMRAC)对具有MIT规则的自适应机构的球梁系统控制器的设计。为了获得最优的性能,需要使用优化方法进行参数的调整(选择),因此将使用遗传算法(GA)作为优化方法来获得这些参数的最优值。线性二次型调节器(LQR)控制器将被使用,因为它是最流行的控制器之一。本文将利用MATLAB Simulink对所提出的球梁系统控制器进行性能测试,以评估其有效性。当球的位置跟踪所需的模型参考时,结果显示了令人满意的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Automation, Mobile Robotics and Intelligent Systems
Journal of Automation, Mobile Robotics and Intelligent Systems Engineering-Control and Systems Engineering
CiteScore
1.10
自引率
0.00%
发文量
25
期刊介绍: Fundamentals of automation and robotics Applied automatics Mobile robots control Distributed systems Navigation Mechatronics systems in robotics Sensors and actuators Data transmission Biomechatronics Mobile computing
期刊最新文献
A Numerical Analysis Based Internet of Things (IOT) and Big Data Analytics to Minimize Energy Consumption in Smart Buildings Design of Small-Phase Time-Variant Low-pass Digital Fractional Differentiators and Integrators Comparative Analysis of CNN-Based Smart Pre-Trained Models for Object Detection on DOTA Research to Simulate the Ship’s Vibration Regeneration System using a 6-Degree Freedom Gough-Stewart Parallel Robot Effective Nonlinear Predictive and CTC-PID Control of Rigid Manipulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1