Mathematical Modeling of Fluid Flow to Radially Fractured Wells in Unconventional Reservoirs

Gao Li, B. Guo, Xiaohui Zhang
{"title":"Mathematical Modeling of Fluid Flow to Radially Fractured Wells in Unconventional Reservoirs","authors":"Gao Li, B. Guo, Xiaohui Zhang","doi":"10.7569/jnge.2018.692507","DOIUrl":null,"url":null,"abstract":"Abstract Radial fractures are created in unconventional gas and oil reservoirs in modern well stimulation operations such as Hydraulic Re-Fracturing (HRF), Explosive Fracturing (EF) and High Energy Gas Fracturing (HEGF). This paper presents a mathematical model to describe fluid flow from reservoir through radial fractures to wellbore. The model can be applied to analyzing angles between radial fractures. Field case studies were carried out with the model using pressure transient data from three typical HRF wells in a lower-permeability reservoir. The studies show a good correlation between observed well performance and model-interpreted fracture angle. The well with the highest productivity improvement by the HRF corresponds to the interpreted perpendicular fractures, while the well with the lowest productivity improvement corresponds to the interpreted conditions where the second fracture is much shorter than the first one or where there created two merged/parallel fractures. Result of the case studies of a tight sand reservoir supports the analytical model.","PeriodicalId":22694,"journal":{"name":"The Journal of Natural Gas Engineering","volume":"23 1","pages":"114 - 132"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Natural Gas Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7569/jnge.2018.692507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Radial fractures are created in unconventional gas and oil reservoirs in modern well stimulation operations such as Hydraulic Re-Fracturing (HRF), Explosive Fracturing (EF) and High Energy Gas Fracturing (HEGF). This paper presents a mathematical model to describe fluid flow from reservoir through radial fractures to wellbore. The model can be applied to analyzing angles between radial fractures. Field case studies were carried out with the model using pressure transient data from three typical HRF wells in a lower-permeability reservoir. The studies show a good correlation between observed well performance and model-interpreted fracture angle. The well with the highest productivity improvement by the HRF corresponds to the interpreted perpendicular fractures, while the well with the lowest productivity improvement corresponds to the interpreted conditions where the second fracture is much shorter than the first one or where there created two merged/parallel fractures. Result of the case studies of a tight sand reservoir supports the analytical model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非常规油藏径向压裂井流体流动数学模型
在现代增产作业中,如水力再压裂(HRF)、爆炸压裂(EF)和高能气体压裂(HEGF)等,非常规油气储层都会产生径向裂缝。本文建立了流体从储层经径向裂缝流向井筒的数学模型。该模型可用于分析径向裂缝夹角。利用该模型对某低渗透油藏三口典型高通量井的压力瞬态数据进行了现场实例研究。研究表明,观察井动态与模型解释裂缝角之间具有良好的相关性。通过HRF提高产能最高的井对应于解释的垂直裂缝,而提高产能最低的井对应于解释的第二条裂缝比第一条缝短得多或形成两条合并/平行裂缝的条件。一个致密砂岩储层的实例研究结果支持了分析模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chapter 6 Production Sulfur Solubilities in Toluene, o-Xylene, m-Xylene and p-Xylene at Temperatures Ranging from 303.15 K to 363.15 K Mathematical Modeling of Fluid Flow to Radially Fractured Wells in Unconventional Reservoirs Vapour-Liquid Equilibria of Ethane and Ethanethiol: Experiments and Modelling Solubility of Benzene in Aqueous Solutions of Monoethanolamine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1