Deep auto-encoder network for mechanical fault diagnosis of high-voltage circuit breaker operating mechanism

Qiuping Yang, Fang Hao
{"title":"Deep auto-encoder network for mechanical fault diagnosis of high-voltage circuit breaker operating mechanism","authors":"Qiuping Yang, Fang Hao","doi":"10.1515/pjbr-2022-0096","DOIUrl":null,"url":null,"abstract":"Abstract To improve the accuracy of the mechanical fault diagnosis of the operating mechanism and fully exploit the characteristic information in the vibration signal of the high-voltage circuit breaker, a mechanical fault diagnosis method of the operating mechanism of the high-voltage circuit breaker based on the deep self-encoding network is proposed. First, the vibration signal of the switch operating mechanism is extracted, the wavelet packet conversion is performed, and the vibration signal of each frequency band is divided into equal times. The energy of the time–frequency subplane of the vibration signal is then calculated, and the time–frequency energy distribution is used as a switch. Finally, a breaker failure diagnostic model based on the deep self-coding network is established. Pretraining and tuning and a 126 kV high-voltage switch are used to simulate different types of faults and validate the method. Experimental results show that this method can acquire sample failure data and perform failure diagnosis, and the diagnosis accuracy rate reaches 97.5%. The deep self-coding network can fully pierce deep information on the switch vibration signal.","PeriodicalId":90037,"journal":{"name":"Paladyn : journal of behavioral robotics","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paladyn : journal of behavioral robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/pjbr-2022-0096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract To improve the accuracy of the mechanical fault diagnosis of the operating mechanism and fully exploit the characteristic information in the vibration signal of the high-voltage circuit breaker, a mechanical fault diagnosis method of the operating mechanism of the high-voltage circuit breaker based on the deep self-encoding network is proposed. First, the vibration signal of the switch operating mechanism is extracted, the wavelet packet conversion is performed, and the vibration signal of each frequency band is divided into equal times. The energy of the time–frequency subplane of the vibration signal is then calculated, and the time–frequency energy distribution is used as a switch. Finally, a breaker failure diagnostic model based on the deep self-coding network is established. Pretraining and tuning and a 126 kV high-voltage switch are used to simulate different types of faults and validate the method. Experimental results show that this method can acquire sample failure data and perform failure diagnosis, and the diagnosis accuracy rate reaches 97.5%. The deep self-coding network can fully pierce deep information on the switch vibration signal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高压断路器操动机构机械故障诊断的深度自编码器网络
摘要为了提高操动机构机械故障诊断的准确性,充分挖掘高压断路器振动信号中的特征信息,提出了一种基于深度自编码网络的高压断路器操动机构机械故障诊断方法。首先提取开关操动机构的振动信号,进行小波包变换,将各频段的振动信号分成等次;然后计算振动信号时频子平面的能量,并以时频能量分布作为开关。最后,建立了基于深度自编码网络的断路器故障诊断模型。利用预训练调谐和126 kV高压开关对不同类型的故障进行了仿真,验证了该方法的有效性。实验结果表明,该方法能够获取样本故障数据并进行故障诊断,诊断准确率达到97.5%。深度自编码网络能充分穿透开关振动信号的深度信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robot-assisted therapy for upper limb impairments in cerebral palsy: A scoping review and suggestions for future research Discrimination against robots: Discussing the ethics of social interactions and who is harmed Power quality enhancement of solar–wind grid connected system employing genetic-based ANFIS controller Control optimization of taper interference coupling system for large piston compressor in the smart industries Ultra-low latency communication technology for Augmented Reality application in mobile periphery computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1