{"title":"Soil fertility and corn yield changes depending on the tillage system","authors":"A. Mnatsakanyan","doi":"10.33952/2542-0720-2021-2-26-155-164","DOIUrl":null,"url":null,"abstract":"Tillage system is one of the factors that influences crop yield. The aim of the research was to determine the influence of the basic tillage systems on the change in soil fertility, yield and quality of corn grain in the soil and climatic conditions of the central zone of the Krasnodar Territory. The surveys were conducted in 2018–2020 on the experimental fields of the FSBSO “National Center of Grain named after P. P. Lukyanenko”. Soil – chernozems leached. All the experiments were carried out according to the standard methodology. In a stationary experiment, observations were performed to study several tillage practices: conventional tillage (25 cm depth plowing), mulch tillage with soil decompaction (reduced tillage done with a chisel plow to a depth of 32 cm for row crops), mulch tillage (deep tillage is excluded, disking to a depth of 10 cm twice or thrice is used instead). Plowing to a 25 cm depth improves the bulk of the soil in the 0–30 cm layer. However, chiseling to a depth of 32 cm and disking to a depth of 10 cm twice or thrice caused soil compaction. Standard tillage practice led to a decrease in the number of agronomically valuable aggregates (61.1 %) and their water resistance (59.4 %) compared to soil decompaction and minimum-tillage systems. The highest rates of productive moisture reserves were on the plots with traditional tillage and decompaction (140.6 and 141.5 mm, respectively, which is 14.7 % higher compared to the minimum mulching). The studied soil cultivation systems did not affect “1000-grain weight” but significantly affected the yield of grain from one ear (124.3 g) and the number of formed ears per one plant (1.04 pcs.). The corn yield on the fields with traditional and decompaction tillage methods was 56.9 and 55.9 c/ha, respectively; on minimum-tillage system, it decreased by 4.8 %. Protein content in grain harvested from the plots with traditional tillage practice was 11.4 %, which is higher compared to the minimum-tillage system. No significant differences were detected for crude ash and dry matter.","PeriodicalId":22344,"journal":{"name":"TAURIDA HERALD OF THE AGRARIAN SCIENCES","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TAURIDA HERALD OF THE AGRARIAN SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33952/2542-0720-2021-2-26-155-164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Tillage system is one of the factors that influences crop yield. The aim of the research was to determine the influence of the basic tillage systems on the change in soil fertility, yield and quality of corn grain in the soil and climatic conditions of the central zone of the Krasnodar Territory. The surveys were conducted in 2018–2020 on the experimental fields of the FSBSO “National Center of Grain named after P. P. Lukyanenko”. Soil – chernozems leached. All the experiments were carried out according to the standard methodology. In a stationary experiment, observations were performed to study several tillage practices: conventional tillage (25 cm depth plowing), mulch tillage with soil decompaction (reduced tillage done with a chisel plow to a depth of 32 cm for row crops), mulch tillage (deep tillage is excluded, disking to a depth of 10 cm twice or thrice is used instead). Plowing to a 25 cm depth improves the bulk of the soil in the 0–30 cm layer. However, chiseling to a depth of 32 cm and disking to a depth of 10 cm twice or thrice caused soil compaction. Standard tillage practice led to a decrease in the number of agronomically valuable aggregates (61.1 %) and their water resistance (59.4 %) compared to soil decompaction and minimum-tillage systems. The highest rates of productive moisture reserves were on the plots with traditional tillage and decompaction (140.6 and 141.5 mm, respectively, which is 14.7 % higher compared to the minimum mulching). The studied soil cultivation systems did not affect “1000-grain weight” but significantly affected the yield of grain from one ear (124.3 g) and the number of formed ears per one plant (1.04 pcs.). The corn yield on the fields with traditional and decompaction tillage methods was 56.9 and 55.9 c/ha, respectively; on minimum-tillage system, it decreased by 4.8 %. Protein content in grain harvested from the plots with traditional tillage practice was 11.4 %, which is higher compared to the minimum-tillage system. No significant differences were detected for crude ash and dry matter.